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In supervised learning applications, AIC and many
other popular model selection methods are biased be-
cause they implicitly assume that the inputs (covari-
ates) X in the training set take the same values as the
inputs X ′ in the test set. Based on a novel, unbiased
expression for KL divergence, we propose FAIC, a fo-
cused version of AIC that takes the value of X ′ on the
test set into account. Our experiments suggest that
if X ′ substantially differs from X, then FAIC predic-
tively outperforms AIC, BIC and several other meth-
ods including Bayesian model averaging.

We introduce FAIC as an adaptation of AIC to su-
pervised learning problems. The aim of AIC (Akaike,
1973) and many other model selection methods is to
use the data to find the model g which minimizes

−2 EU EV log g(V | θ̂(U)), (1)

where θ̂ represents the maximum likelihood estimator
in that model, and both random variables are inde-
pendent samples of n data points each, both following
the true distribution of the data. This quantity can be
seen as representing that we first estimate the model’s
parameters using a random sample U, then judge the
quality of this estimate by looking at its performance
on an independent, identically distributed sample V.

In supervised learning problems such as regression and
classification, the data points consist of two parts ui =
(xi, yi), and the models are sets of distributions on the
output variable y conditional on the input variable x
(which may or may not be random). We call these
conditional models. Then (1) can be adapted in two
ways: as the extra-sample error

−2 EY|X EY′|X′ log g(Y′ | X ′, θ̂(X,Y)), (2)

and, replacing both X and X ′ by a single variable X,
as the in-sample error

−2 EY|X EY′|X log g(Y′ | X, θ̂(X,Y)). (3)

The standard expression behind AIC (1) makes no ref-
erence to X or X ′, so that all known versions of AIC

end up estimating the in-sample error. However, the
extra-sample error (2) is more appropriate as a mea-
sure of the expected performance on new data.

To get an estimator for (2), we do not make any as-
sumptions about the processes generating X and X ′

(so we can deal with covariate shift and with nonran-
dom inputs) but treat these values as given. A deriva-
tion similar to AIC’s leads to a penalty term of k+κX′

in place of AIC’s 2k; in the case of linear regression,

κX′ =
n

n′
tr

[
X ′
>
X ′(X>X)−1

]
,

where X,X ′ represent design matrices and n, n′ their
respective numbers of data points. Similarly, a small
sample corrected version analogous to AICC (Hurvich
& Tsai, 1989) can be derived and has penalty

k + κX′ +
(k + κX′)(k + 1)

n− k − 1
.

If our goal is prediction, then X corresponds to the
training data, andX ′ may be replaced by a single point
x for which we need to predict the corresponding y.
We name this method Focused AIC. Note that FAIC
may select different models for different values of x.
Alternatively, X ′ may be chosen using (an estimate
of) all test inputs if a single choice of model is desired.
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