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Preface

The first word that characterizes the organization of the 22nd edition of BENE-
LEARN in Nijmegen is 'finally’. Although we celebrate the twenty-second edi-
tion of the Annual Belgian Dutch Conference on Machine Learning, this year
marks the first time the event is held on the grounds of the Radboud University
Nijmegen, on June 3, 2013. The 90-year old university, located in the oldest city
of the Netherlands, hosts a thriving community of machine-learning researchers,
spread over several departments and research centers on its campus. This is a
typical trend for machine learning: although a strong component of the Al and
computer science curriculum, its application has become so widespread that you
can be a full-time machine learning researcher at the Faculty of Arts or at a
neuroscience research institute.

BENELEARN continues to serve as one of the main occasions for regional
machine learning scientists to present their work and foster new collaborations.
We opted for a one-day event, filled with oral and poster presentations and a
keynote lecture. We are very happy to welcome prof. Dan Roth as our invited
speaker. Dan Roth is a Professor in the Department of Computer Science and
the Beckman Institute at the University of Illinois at Urbana-Champaign. He
is a Fellow of the ACM, AAAI and ACL, for his contributions to Machine
Learning and to Natural Language Processing. He has published broadly in
machine learning, natural language processing, knowledge representation and
reasoning, and learning theory, and has developed advanced machine learning
based tools for natural language applications that are being used widely by the
research community. Prof. Roth will talk about constrained conditional models
and their application to text understanding.

We received 37 submissions divided in two categories: full, original research
papers and compressed contributions summarizing work that has been peer
reviewed and accepted for publication elsewhere. We accepted 33 papers for
presentation. Of these, 12 are original research papers, and 21 are compressed
contributions. The programme features 12 oral presentations and 21 poster
presentations.

We would like to extend our thanks to the programme committee for per-
forming an outstanding and timely job in the reviewing process, and in par-
ticular to Maarten van Someren for his steering and mentoring, and to Willem
Waegeman for kindly sharing information and experiences from last year’s BENE-
LEARN. We are indebted to our local organization team consisting of Nicole
Messink, Tom Claassen, Florian Kunneman, Joris Mooij, Rahim Saeidi, Suzan
Verberne, and Sicco Verwer. We would also like to mention our sponsors who
made this conference possible: NWO, SIKS, and Textkernel.

Finally, we thank you for attending BENELEARN and enriching it with
your contribution. We wish you a fruitful day.

Antal van den Bosch, Tom Heskes, David van Leeuwen
BENELEARN 2013 Program Chairs
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BENELEARN 2013: Invited Speaker

Dan Roth, Computer Science and the Beckman Institute
University of Illinois at Urbana/Champaign:

Constrained Conditional Models: Towards Better Semantic
Analysis of Text

Computational approaches to problems in Natural Language Understanding and
Information Extraction are often modeled as structured predictions predictions
that involve assigning values to sets of interdependent variables. Examples
include semantic role labeling (analyzing natural language text at the level of
who did what to whom, when and where), syntactic parsing, Identifying events,
entities and relations in natural language text, transliteration of names, and
textual entailment (determining whether one utterance is a likely consequence
of another). Over the last few years, one of the most successful approaches to
studying these problems involves Constrained Conditional Models (CCMs), an
Integer Learning Programming formulation that augments probabilistic models
with declarative constraints as a way to support such decisions. I will present
research within this framework, discussing old and new results pertaining to
inference issues, learning algorithms for training these global models, and the
interaction between learning and inference.

Short Bio

Dan Roth is a Professor in the Department of Computer Science and the Beck-
man Institute at the University of Illinois at Urbana-Champaign and a Uni-
versity of Illinois Scholar. He is the director of a DHS Center for Multimodal
Information Access Synthesis (MIAS) and holds faculty positions in Statistics,
Linguistics, and at the School of Library and Information Sciences.

Roth is a Fellow of the ACM, AAAT and ACL, for his contributions to Ma-
chine Learning and to Natural Language Processing. He has published broadly
in machine learning, natural language processing, knowledge representation and
reasoning, and learning theory, and has developed advanced machine learning
based tools for natural language applications that are being used widely by the
research community.

Roth is the Associate Editor-in-Chief of the Journal of Artificial Intelligence
Research (JAIR) and will serve as Editor-in-Chief for a two-year term beginning
in 2015. He was the program chair of AAAI11, ACL03 and CoNLL’02, has
been on the editorial board of several journals in his research areas and has
won several teaching and paper awards. He has also given keynote talks and
presented tutorials in some of the major conferences in his research areas.

Prof. Roth received his B.A Summa cum laude in Mathematics from the
Technion, Israel, and his Ph.D in Computer Science from Harvard University in
1995.

vi
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Abstract

Clustering is a widely used data mining task
and a lot of constraint-based clustering meth-
ods have been developped. Our work fo-
cus on the problem of integrating constraint-
based clustering in an inductive database sys-
tem. We propose a new extension of SQL
for constraint-based clustering. We present a
concrete application in the context of micro-
biology.

1. Introduction

Data mining provides many methods to discover pat-
terns or learn models from data. Even for a given type
of pattern, say, association rules, multiple systems are
usually available, each with their strengths and weak-
nesses in terms of efficiency and flexibility. As a result,
it may not be easy, even for specialist users, to solve
a particular data mining problem in the best possible
way. Inductive database (IDB) systems (Imielinski &
Mannila, 1996) can address this problem to some ex-
tent.

The idea behind IDBs is to seamlessly incorporate data
mining in databases. In an IDB system, patterns are
first-class citizens and can be manipulated at the same
level than the data using an inductive query language.
An interesting characteristic of such a query language
is that it is declarative. This means the user speci-
fies the task to execute (e.g., “find all association rules
with confidence at least ¢, support at least s, and one
of A, B, C in the head”), but not the algorithm or
method that should be run. This is an advantage over

Appearing in Proceedings of BENELEARN 2013. Copy-
right 2013 by the author(s)/owner(s).

data mining tools such as Weka (Hall et al., 2009),
where the user must select a particular algorithm, and
then accept the limitations that this choice entails. In
a declarative specification, it is also easier to specify
constraints on the patterns to look for. This links in-
ductive databases to constraint-based data mining, as
argued by Dzeroski (2011).

Much research on inductive databases has focused on
one specific data-mining task, namely association rule
mining. Certain other tasks, among which clustering,
have not received much attention. Further, for those
IDB systems that do cover different types of tasks,
the formulation of a problem can be difficult for non-
specialists.

In this work, we focus on the problem of constraint-
based clustering or semi-supervised clustering. Vari-
ous methods have been developed in this field, intro-
ducing various kinds of constraints that act at differ-
ent levels. It can go from global-level constraints that
act on the resulting clusters, for example specifying
the number of clusters or a minimum size of the clus-
ter, to instance-level constraints, for example must-
link and cannot-link constraints studied by Wagstaff
(2002), also called equivalence constraints, that state
if two instances must be or cannot be in the same
cluster. We propose a query language, an extension of
SQL, that allows the user to query for clusterings and
formulate constraints in an easy way.

The remainder of this paper is organized as follows:
Section 2 discusses related work; Section 3 presents
the query language we propose; Section 4 shows an
application of the query language in a microbiology
context; Section 5 concludes and discusses future work.
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2. Related work

The concept of inductive database has been intro-
duced by Imielinski and Manilla (1996), followed then
by De Raedt (2002b). Boulicaut and Masson (2005)
and more recently Romei and Turini (2011) discussed
some requirements of inductive database languages
and compare some existing systems.

Various inductive database systems have been devel-
opped for different types of databases: SQL-based
systems (MINE RULE (Meo et al., 1998), DMQL
(Han et al., 1996), MSQL (Imieliiski & Virmani,
1999), SPQL/ConQueSt (Bonchi et al., 2006), Min-
ing Views (Blockeel et al., 2012), SiQL/SINDBAD
(Wicker et al., 2008), ATLaS (Wang & Zaniolo, 2003)),
DMX (Microsoft, 2012); XML-based systems (XMINE
RULE (Braga et al., 2003), KDDML (Romei et al.,
2006)); and logic-based systems (RDM (De Raedt,
2002a), LDL++ (Giannotti et al., 2004)). Many of
these systems only deal with association rule mining
(MINE RULE, DMQL, MSQL, XMine). The SIND-
BAD system, along with the SiQL language, supports
the whole data mining process, from pre-processing
to post-processing. It includes clustering but only
using the k-Medoids algorithm. The ATLaS system
extends SQL with user-defined aggregates which can
be used for clustering. DMX also includes clustering
with KMeans and EM algorithms. The Mining Views
framework does not extend the query language but
uses virtual mining views to do different data min-
ing tasks. It has the advantage to integrate the data
mining process in the database management system.
There are also applied system specific to one domain,
like Molfea (Helma et al., 2002), for mining frequent
molecular structures. Even if some of these language
can be extended to include equivalence constraints for
clustering, we propose a new language to express such
constraints in an easy and declarative way that fits the
SQL relational model.

3. Query language

In this section, we present our query language. Before
presenting the actual query, we will discuss the princi-
ples that guided our choice in the design of the query
language.

3.1. Language properties

The goal of the project is to build a system that allows
someone who does not necessarily know data mining
to apply data mining algorithms on his data. For this
the user should be able to ask what he wants in an easy
and declarative way. We list different characteristics

that we want our language to have and that guided
the design of the query language.

e First, the language should be concise. This means
queries for simple problem should be short. For
instance, asking for a simple clustering without
any constraints or specific parameters should be
very easy.

e Second, the language should be intuitive, and this
for both formulating and understanding a query.
This means that given a question, it should be
easy to formulate it in a query, but also that a
written query can be easily understandable.

e Finally, the language should be expressive. This
means that the language should allow formulating
complex queries. This implies that the language
should allow various constraints that can be com-
bined. In the idea of an iterative knowledge dis-
covery process, this also includes the closure prin-
ciple. This principle says that we should be able
to query the result of a query. This allows com-
posing queries in a complex way. For instance, it
is possible to first execute a clustering using some
parameters, then select the instances of one clus-
ter and do another clustering on these instances
using other parameters.

3.2. Language syntax

We choose to build an extension of SQL as it is widely
used and intuitive. In the logic of inductive database,
data and patterns should be considered at the same
level. This implies that a query for patterns should
follow the same logic as a query for data. For this
reason, we designed our clustering query based on the
SELECT query of SQL.

For a better understanding, we will show query exam-
ples on the following imaginary dataset : we have a
table named points with 4 attributes d, x, y, valid.
id is an integer, x and y are real numbers, valid is 0
or 1 or null if unknown.

3.2.1. CLUSTER STATEMENT

We introduce the new CLUSTER statement in Fig-
ure 1. Let us explain the different parts :

data The data we want to cluster. It is a table whose
columns are the attributes and lines are the in-
stances to cluster. It can be a table present in the
database or the result of a SQL select query.

attributes This part differs from the SELECT query.
In the select query, it indicates which column to



A query language for constraint-based clustering

<statement> ::= "CLUSTER" <attributes>
"FROM" <data>
["WITH" <constraints>]

<attributes> ::= "x" | <attr>
<attr> ::= <attributename>[, attr]

<constraints> ::= <c> ["AND" <constraints>]
<c> ::= <nbclusterconstraint>
| <linkconstraint>

<nbclusterconstraint> ::=
"NumberOfClusters = n"

<linkconstraint> ::=
["SOFT"] ["MUST" | "CANNOT"] LINK
<cdata>
["BY "<attributename>]

Figure 1. CLUSTER statement

select and return in the result. In a cluster query,
this indicates which columns to use for the cluster-
ing task. This way, you can ignore some attributes
that are not relevant for the clustering task but
still have them in the result of the query, like the
Ids. As in the SELECT query, a * means that all
columns are used for the clustering.

constraints : the constraints you can add to the clus-
tering. They will constrain the result but also the
method used to solve the query. The constraints
available are :

e the number of clusters : to specify the num-
ber of cluster wanted.

e link constraints: instance-level constraints to
specify if some instances must be or cannot
be in the same cluster.

Here is an example of a query to cluster all the valid
points according to x and y.

CLUSTER x,y
FROM (SELECT * FROM points
WHERE valid=1)

3.2.2. LINK CONSTRAINTS

Let us now look at the syntax of the link constraints.

cdata The constrained data following LINK are the
instances involved in the link constraint. The set

of the constrained instances must be a subset of
the data selected in the CLUSTER query. Subse-
quently, they could in principle be selected by a
query: SELECT * FROM (data) WHERE (condi-
tions). However, to be more concise and to avoid
repeating the (data) part, we only put the con-
ditions that would follow the WHERE in such a

query.

MUST/CANNOT LINK The idea of this con-

straint was first to incorporate must-link
and cannot-link constraints as formulatied by
Wagstaff (2002). These constraints are pair-wise
constraints which means one concerns only two
instances. It can be easily understood that if
one wants to specify a lot of constraints, the size
of one query can quickly increase too much. To
specify quickly a large number of constraints, we
allow the data to be composed of more than two
instances. For MUST LINK, it is supposed that
all instances in cdata must be in the same cluster.
For CANNOT LINK, it is supposed that all
instances in cdata have to be each in a different
cluster. This allows specifying small group of
instances that should be clustered together in a
more concise way than specifying all pair-wise
constraints. Bar-Hillel et al. (2006) studied this
idea of making small groups of instances, that
they call chunklets. In the following example, the
problem is to cluster all the points in 2 cluster,
knowing that the points 3, 4 and 6 must be in
the same cluster and the points 1 and 3 must be
in different clusters. The query formulating this
problem is as follows:

CLUSTER x, y
FROM (SELECT * FROM points)
WITH MUST LINK (id IN (3, 4, 6))
AND CANNOT LINK (id IN (3, 1))

BY The BY word can be used with MUST LINK and

CANNOT LINK to add link constraints between
instances using an attribute of the data. With
MUST LINK, must-link constraints will be cre-
ated between each pair of instances that have the
same value for the specified attribute. With CAN-
NOT LINK, cannot-link constraints will be cre-
ated between each pair of instances that have dif-
ferent values for the specified attribute. To avoid
repetition, it is also possible to just say LINK
(data) BY attribute. This will create must-link
and cannot-link constraints according to the spec-
ified attribute as if it was MUST LINK (data)
BY attribute AND CANNOT LINK (data) BY
attribute. This allows for more concise queries
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for instance in the case of partially labeled data.
However, if no BY statement is present after the
LINK, it is considered as MUST LINK. In the
next example, some of the points are labelled as
valid, some as invalid, and the rest is unknown.
The problem is to cluster all the points in 2 clus-
ters with the valid ones in one cluster and the
unvalid ones in another cluster.

CLUSTER x, y
FROM (SELECT * FROM points)
WITH LINK (valid=0 OR valid=1)
BY valid

SOFT The link constraints are considered hard con-
straints by default. However, one may be also
interested in soft constraints. For instance, let us
suppose there is some label that makes a partition
of the data. Using this partition as a bias, one can
be interested in clustering the data using other at-
tributes do that instances having the same label
are more likely to be in the same cluster. This
can be achieved by adding a SOFT LINK con-
straint using this label. In the following example,
all points are known as valid or invalid. The prob-
lem is to cluster the points according to x and y
with a preference that the valid instances are in
the same cluster and the unvalid ones are in an-
other one.

CLUSTER x, y
FROM (SELECT * FROM points)
WITH SOFT LINK BY valid

3.3. Result of a query

One of the principles of database and querying lan-
guage is the closure principle. It says that the result
of a query should be queryable. This allows an itera-
tive process for exploring the data progressively. As we
are querying tables, the result should also be a table.
As a first solution, we adopt one solution of SIND-
BAD (Wicker et al., 2008). The result of the query
is the input table (data) where a column cluster has
been added that contains for each instance its clus-
ter assignement as a strictly positive integer. Figure 2
shows the different elements of the query CLUSTER
x, y FROM (SELECT * FROM points).

This is a very simple way of giving the result of a
clustering algorithm. However, it only works for par-
titioning clustering. It does not allow presenting the
result of hierarchical, density-based, overlapping or
other kinds of clustering. Such methods can still be
used to build the clusters but the result should be a

e ™
( /clustering attributes) h

id X y valid || cluster
\_ data .
\_ result Y,

Figure 2. The cluster query viewed as table.

partition of the data. It is an issue we want to addres
in future work.

3.4. Query execution

Once a query has been formulated, it has to be exe-
cuted. The problem is then to choose what method
to use. Different methods or algorithms may not lead
to the same result. Besides, we have to take into ac-
count the different constraints we can add. To do so,
we decided to execute different methods depending on
the constraints specified. The choice of the method is
done as follows:

e By default, the distance used is a Euclidian dis-
tance. If soft link constraints are specified, a met-
ric is learned and the resulting Mahalanobis dis-
tance is used as in (Bar-Hillel et al., 2006).

e If there are hard link-constraints, the CopKmeans
algorithm (Wagstaff, 2002) is executed. For now,
the number of clusters has to be specified. If it is
not, it is set to the minimum number of clusters
so that the link constraints can be respected. If
this number is 1, it is set to 2.

e If there are no link constraints, the EM algorithm
is used and if the number of clusters is not spec-
ified, cross-validation is used to determine it. We
used for this the weka implementation of EM.

Currently, only these algorithms are implemented as
we have focused our work on the formulation of the
query but not on its execution. One of the next goals in
our future work is to improve this execution. The chal-
lenge will be to combine different kind of constraints.
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4. Application

In this section, we present how the query language is
used in a concrete application. Our language is domain
independent. We here show an example of how it can
be integrated in software specific to a domain, in this
case microbiology.

4.1. Cellphinder project

Our work is part of a project called CellPhinder. This
project groups researchers from microbioloby and com-
puter science and it is the initial source of motivation
for our new query language. Our role in the project
is to make data-mining available for the microbiolo-
gists. As said earlier, our query language is declara-
tive. Therefore, it can be used by people who do not
know clustering algorithms but are interested in the
result. We indeed believe it will be easier to learn how
to use our language than to learn various clustering
methods and to have to put the data into the right
format. We also choose to use a query language be-
cause it easily allows an iterative exploration of the
data by reusing previous queries to build new ones.
As the microbiologists are the first user of our system,
we choose the patterns and constraints that are useful
and of interest to them. This is why we focused on
clustering, as it provides two interesting learning pat-
terns: on one hand, the clusters can identify normal
behavior in the data; on the other hand, instances far
from any clusters or in an isolated cluster are outliers,
which is also of interest for the microbiologists.

4.2. The software

We are currently building software to make our lan-
guage accessible to microbiologists. It will provide an
easy access to the data, as well as visualisation tools,
for example distribution graphs. The user will have
the possibility to build the query step by step using
graphic tools but also to directly type the query he
wants to execute. The software will show the result of
the query in various representations, textual or graph-
ical. At this moment, the software is still being de-
veloped. When the microbiologists are able to use the
software, they will provide us with direct feedback on
the language.

Our software is implemented in Java. The system
is coupled with a MySQL database. When a cluster
query is parsed, the SQL part is given to the database
and the resulting data is given to the clustering engine.
This engine uses Weka implementations of KMeans
and EM and our custom-made implementation of Cop-
KMeans.

4.3. Query examples
4.3.1. THE DATA STRUCTURE

The structure of the data we are working on is as
follows. An Experiment consists of various lineages.
A Lineage is the set of cells that originates from one
mother cell. This mother cell grows and then divides
in two cells, which grow and each divide in two cells,
etc... From a Cell, different parameters are measured
at each definite lapse of time: length, width, curva-
ture, perimeter, growthspeed,... A cell then has differ-
ent states over time. Finally, Fluorescence spots are
also measured for each state. Fluorescence is made by
proteins inside the cell. The fluorescence can be diffuse
or localised. Consequently, we have a database made
of five tables: experiment, lineage, cell, stateovertime,
fluorescence. These tables have one-to-many relation
from one to the next (an experiment has many lineage,
that have many cells...). We also have a relation inside
the cell table between parent/children cells.

4.3.2. EXAMPLE 1

Assume data from a new experiment, experiment num-
ber 5, is available. The different id parameters in the
following examples are not relevant for the example,
they are only here to have an exact, realistic query.
First, we want to cluster the cells of the experiment.

CLUSTER LifeTime, LagTime, LengthMean
FROM (SELECT c.Id, c.LifeTime, c.LagTime,
AVG(s.Length) AS LengthMean
FROM stateovertime s, cell c,
lineage 1
WHERE 1.ExperimentId=5
AND c.LineageIld = 1.Id
AND s.Cellld = c.Id
GROUP BY c.id)

4.3.3. EXAMPLE 2

By looking at the data, a few lineages have been found
that seem to behave similarly. Another one has been
found that seems to behave really differently than the
others. It can be interesting to know if there are other
lineages like this in the data. Must-link constraints can
be added between the "normal” lineages and cannot-
link constraints between the special and the others.

CLUSTER LifeTimeMean, LagTimeMean
FROM (SELECT 1.1Id,
AVG(c.LifeTime) AS LifeTimeMean,
AVG(c.LagTime) AS LagTimeMean,
FROM cell c, lineage 1
WHERE c.Lineageld = 1.Id
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GROUP BY 1.id)
WITH MUST LINK (Id IN (20, 21,
22, 23, 25))
AND CANNOT LINK (Id IN (20, 24))

4.3.4. EXAMPLE 3

The whole dataset is divided between mutants, which
are cells that have been modified, and wildtypes, which
are unmodified cells. This suggests certain similarity
between cells that are of the same type and it may
be interesting to use this background knowledge to do
clustering. However, it is already a full partition of the
data thus hard constraints are not useful. Therefore,
soft constraints can be used. In the lineage table, there
is a Mutant attribute that is 0 is the cells of the lineage
are wildtypes and 1 if they are mutants.

CLUSTER LifeTime, LagTime,
LengthMean, WidthMean
FROM (SELECT c.Id, c.LifeTime,
c.LagTime, 1.Mutant
AVG(s.Length) AS LengthMean
AVG(s.Width) AS WidthMean
FROM stateovertime s, cell c,
lineage 1
WHERE 1.ExperimentId=5
AND c.Lineageld = 1.Id
AND s.Cellld = c.Id
GROUP BY c.id)
WITH SOFT LINK BY Mutant

5. Conclusions & Future work

In our work, we have considered must-link and cannot-
link constraints which are instance level constraints.
The next step will be to include more constraints in
our language: feature-level constraints (so that some
features can be specified more important than oth-
ers), global-level constraints (minimum cluster size,
balanced clusters). This will raise the problem of solv-
ing the query. Indeed, there exist algorithms to solve
clustering with these different type of constraints sep-
arately. However, the problem occurs when combining
different types of constraints in one query.

Another issue we want to adress is the problem of
the representation of the result. Indeed, we can only
present partitioning clusterings but it can be interest-
ing to try to include other types of results like over-
lapping, hierarchical or model-based clusterings.

Finally, we have currently included outlier detection
as a post-processing step of clustering in our software
but it can be interesting to include it in the language
as a real task.
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Abstract

We present a framework for investigating
properties of similarity measures as a crite-
rion for selecting the best-suited measure for
a specific task, in this paper: corpus selection
for self-training. We focus on the squared
Pearson’s correlation coefficient as the prop-
erty to rank similarity measures.  Self-
training is an unsupervised domain adapta-
tion technique, in which three corpora are
involved. Especially, the choice of the unla-
beled corpus can be important and we show
that similarity measures can be helpful when
selecting an unlabeled corpus. In addition,
we found that the correlation coefficient be-
tween similarity and accuracy of a similarity
measure can be used to select the most suit-
able similarity measure, but other properties
of similarity measures do also play a role.

1. Introduction

We first give a definition of similarity measure, since
it is a vague term. In the context of this paper, a sim-
ilarity measure is any function that produces a real
number when applied to two text corpora. The out-
put of the function should never switch sign and when
two corpora are more similar, the absolute value of the
similarity measure should be smaller. Divergences, like
the Kullback-Leibler divergence, can be used as sim-
ilarity measure, but divergences are certainly not the
only candidates. When the two corpora are from dif-

Appearing in Proceedings of BENELEARN 2013. Copy-
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ferent domains, the similarity measure can be called a
domain similarity measure.

Domain similarity measures have been used in differ-
ent natural language processing (NLP) setups (Zhang
& Wang, 2009; McClosky, 2010; Plank, 2011) and,
in general, the best-suited similarity measure depends
on the task and the specific function of the similar-
ity measure. Also combinations of different similarity
measures have been tried. Nevertheless, it remains un-
clear which properties of a good similarity measure are
responsible for its superiority. Our hypothesis is that
a limited set of relevant properties exists and, depend-
ing on the processing task, some of the properties be-
come more important than others. If this point of view
is correct, creating an overview of existing similarity
measures and their ranking for the different properties,
would liberate the researcher from having to try all
similarity measures and all combinations of measures
in order to find the most appropriate measure(s).

In this paper, we investigate one candidate property,
namely the degree of linear correlation between the
similarity between two corpora and the accuracy in a
machine learning experiment, using one of the corpora
as the training corpus and the other corpus as the test
corpus. The incentive to focus on the linear correlation
comes from a general observation in domain adapta-
tion literature: the more the domains of the test and
the training corpus resemble each other, the better the
performance of a machine learner will be. In addition,
it has been found that for part-of-speech tagging, the
correlation between accuracy and similarity is indeed
linear (Van Asch & Daelemans, 2010).

When the linear correlation is selected as the discrimi-
native property for similarity measures, it is possible to
define what best-suited signifies. In this isolated situa-
tion, the best-suited similarity measure is the measure
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that exhibits the highest squared Pearson correlation
coefficient, r? (Pearson, 1896). With circular reason-
ing, this means that performance is the best similarity
measure, because in this case the linear correlation
would be perfect. Indeed, the best way to find out the
result of an experiment is by running that experiment,
but running an experiment can be time-consuming or
there may be no annotated data available to actually
compute the performance. For this reason, similar-
ity measures that can be more quickly computed and
that do not require annotated data are investigated.
The linear correlation of these measures will be less
strong, but, in return, they come with annotation-
independence.

The remainder of this paper consists of an overview of
the related research (Section 2), definitions of the dif-
ferent similarity measures that are used (Section 3), a
presentation of the machine learning task (Section 4),
the concept of self-training and the performance indi-
cator (Section 5), experimental results (Section 6). A
final section contains the conclusions and perspectives.

2. Related research

Divergences are used in natural language processing
in various situations ranging from feature selection
and training corpus creation to measuring the similar-
ity between two language models (Della Pietra et al.,
1997; Lee, 2001; Gao et al., 2002; Daumé I1I & Marcu,
2006; Chen et al., 2009; Mansour et al., 2009; Zhang
& Wang, 2009; McClosky, 2010; Moore & Lewis, 2010;
Plank, 2011). Some of the divergences that are used
are perplexity, Kullback-Leibler divergence, and the
Rényi divergence.

It is possible to use the divergence as such, using
its value to draw inferences about corpora (Verspoor
et al., 2009; Biber & Gray, 2010), but the most inter-
esting usages apply the divergence to a machine learn-
ing system. A good example of such an application is
the prediction of parsing accuracy (Ravi et al., 2008).

Despite the fact that authors have shown that a diver-
gence (Van Asch & Daelemans, 2010; Plank, 2011) or
a linear combination of divergences (McClosky, 2010)
can be successfully used to link the similarity between
domains to the performance of a natural language pro-
cessing system, no consensus exists about which diver-
gence or combination of divergences is best suited for
the task. The best divergence is not selected on the-
oretical grounds but by testing a range of divergences
and selecting the best one. Although this is a valid
working method, in this paper we investigate if it is
possible to select the best measure for a given task

using the correlation of the divergence with the per-
formance.

3. Similarity measures

A text corpus needs to be converted into a measur-
able representation if the goal is to express similar-
ity between two corpora by means of a single figure.
Examples of such representations are: a single figure
(e.g. the average sentence length in the corpus) or a
distribution (e.g. the relative frequencies of the unique
tokens in a corpus). Similarity can be expressed by
the difference between two representations or between
combinations of representations. In this paper, we use
similarity measures that are based on distributions,
which are simple, yet expressive, representations of a
corpus. A distribution P can be described formally as:

P:{pk:pk€R+Aipi:1} (1)

3

with £ € N, a unique identifier for each unique to-
ken (=type), with py the relative frequency of a type
k in the corpus, and n the number of unique tokens
in the text corpus. Based on these distributions, the
following similarity measures are tested in this paper:
Kullback-Leibler divergence, KL (Kullback & Leibler,
1951), Rényi divergence, R (Rényi, 1961), Skew di-
vergence, S (Lee, 1999), Jensen-Shannon divergence,
JS (Lin, 1991), simple Unknown Word Ratio, SUWR
(Zhang & Wang, 2009), and overlap. Overlap is the
conceptual complement to sSUWR.

Given two distributions: P based on a test corpus T
and @ based on a training corpus S, the formulas of
the similarity measures are:

KL(P;@Q) = puloga (") (2)
k

1 o .
R(P;Q;a) = mlogz(ZP?Qi ) with a >0
k

S(P;Q) = KL(Q;aP + (1 — a)Q) with a € [0,1]

(4)
JS(P;Q):%[KL(P; L;Q)H(L(Q;P;Q)
(5)
~ HE:pe #0Aqe =0}
sUWR = o 20)] (6)
Overlap = [tk : pr = 0 A ge 7 0} (7)

{k : ar # 0}
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With pg the relative frequency of type k in corpus P,
qr the relative frequency of type k in corpus Q. If a
type is not present in a distribution, it adopts a relative
probability of 0.1

The measures have been chosen based on their suitabil-
ity in tasks such as parsing and part-of-speech tagging
(Lee, 2001; Daumé IIT & Marcu, 2006; Zhang & Wang,
2009; Van Asch & Daelemans, 2010; Plank, 2011) and
overlap is chosen because it is an unsuitable measure.
Overlap measures the proportion of types present in
the training corpus, but not included in the test cor-
pus. It is clear that this information is not necessarily
helpful for predicting accuracy. The purpose is to have
a similarity measure that deviates from the others.

4. NLP machine learning task
4.1. British National Corpus

The corpus that is used for the experiments is the
British National corpus, BNC (BNC, 2001). This cor-
pus contains part-of-speech labels and is divided into
different domains.

Table 1. Overview of number of tokens and sentences in
each domain of the BNC.

DOMAIN # TOKENS # SENTENCES
IMAGINATIVE 19,507,596 1,333,450
WORLD AFFAIRS 17,925,728 726,881
SOCIAL SCIENCE 13,481,239 542,410
LEISURE 11,088,447 560,094
ARTS 7,182,257 303,019
APPLIED SCIENCE 7,154,185 312,948
COMMERCE & FINANCE 6,787,847 302,455
NATURAL & PURE SCIENCE 4,095,326 172,836
BELIEF & THOUGHT 3,160,642 136,366

The BNC annotators provided nine domain codes
(i.e. wridom codes), making it possible to divide the
text from books and periodicals into nine subcorpora.
These annotated semantic domains are: imaginative
(wridom1), natural & pure science (wridom2), applied
science (wridom3), social science (wridom4), world af-
fairs (wridomb), commerce & finance (wridom6), arts
(wridom7), belief & thought (wridom8), and leisure
(wridom9). The smallest domain is the belief &
thought domain, consisting of ~3M tokens, see Ta-
ble 1. To eliminate the influence of different corpus
sizes, a random selection of approximately 1,500,000

'For the Kullback-Leibler divergence, if py # 0 but g, =
0, smoothing is applied, such that g, = 27°2.
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tokens has been taken from each domain. During sam-
pling, sentences are kept intact.

4.2. Part-of-speech tagging

In this paper, we have chosen the part-of-speech tag-
ging machine learning task, because of the substantial
influence of domain differences on the performance for
this task. The machine learner that is used for the ex-
periments is the memory-based part-of-speech-tagger,
MBT (Daelemans & van den Bosch, 2005). MBT? is a
machine learner that stores examples in memory and
uses an extension of the kNN algorithm to assign part-
of-speech labels. The default settings were used. An
advantage of MBT is its speed, making it the machine
learner of choice to carry out a high number of exper-
iments. In addition, the conclusions of this paper do
not hinge upon the choice of the machine learner, since
the linear correlation between similarity measure and
accuracy is observed for other machine learners (Van
Asch, 2012).

5. Self-training setup
5.1. Procedure

Self-training is a technique consisting of automatically
labeling additional training data in a semi-supervised
way, before running an experiment (Charniak, 1997;
McClosky, 2010; Sagae, 2010). Jiang and Zhai (2007)
present an example for part-of-speech tagging.

Three corpora are needed for self-training: a labeled,
training corpus, a labeled test corpus, and an unla-
beled additional corpus. During self-training, a model
is learned from the training data and it is applied to
the unlabeled data. Thus, the additional training data
is created by automatically labeling unlabeled data.
Next, the (partially incorrectly) labeled, additional
data is appended to the original training data (self-
training step 1). This first labeling step is followed by
a second training phase. The model resulting from this
phase is then used to label the test data (self-training
step 2).

It remains under debate whether self-training is a use-
ful method; it is not shown to lead to performance gain
in every experimental setup. Sagae (2010) argues that
self-training is only beneficial in those situations where
the training and test data are sufficiently dissimilar,
but other factors — such as labeling accuracy of the
unlabeled data — have an influence too. It would be
helpful if the positive effect of the application of self-

2Available at http://ilk.uvt.nl/mbt (Last accessed:

March 2013)
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training could be determined in advance. Thus, given
a set of three corpora, the experimental question is:
Does a given setup lead to an accuracy increase when
self-training is applied?

5.2. Evaluation and performance indicator

F-score® can be used for evaluating the setups (van Ri-

jsbergen, 1975). A true positive (tp) is a three-corpus
setup that results in an accuracy increase and that has
been predicted to benefit from self-training. A false
positive (fp) is a setup that does not benefit from self-
training, although it was predicted to do so. A false
negative (fn) is a setup that benefits from self-training,
but was predicted the converse.

For the experiments of this paper, when each setup is
predicted to lead to accuracy gain, the F-score would
be only 25.61% (see Section 6.2). This baseline is an
indication of the general success of self-training. If self-
training would always be helpful, this baseline would
be 100%. But since this is not the case, the low base-
line is an incentive to look for a way to predict whether
self-training will be increasing performance or not for
a given combination of corpora. To this end, a perfor-
mance indicator J is designed.

In our design, the performance indicator is a binary
indicator: If the performance indicator is positive for a
given setup, self-training is considered to be beneficial.
If the indicator is negative, no gain is to be expected.

Test corpus Test corpus
A
dz
d,
d Unlabeled
data
d, O
\ Training corpus
+
O Labeled unlabeled data
Training corpus

Figure 1. Theoretical justification of the performance indi-
cator §: Overview of similarities.

Figures 1 and 2 illustrate the rationale behind the de-
sign of the performance indicator §. Figure 1 shows the

(1+82) tp .
(1+82) tp+B2 fp+fn’

3F-score = In this paper, [ is set to
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SELF-TRAINING

ACCURACY GAIN
A
GOLD
SELF-TRAINING
ACCURACY acgy
DEFAULT
acc, EXPERIMENT

ACCURACY

Figure 2. Theoretical justification of the performance indi-
cator d0: Self-training accuracy gain.

different similarities that can be measured. d; repre-
sents the similarity between the training corpus and
the test corpus. This is the only similarity involved
when a straightforward test/train experiment is run.
ds is the similarity between the training corpus and
the additional unlabeled data. The labeling accuracy
in the first self-training step is correlated with this
similarity. ds is the similarity between the additional
data and the test corpus. The more similar the test
corpus and the additional data, the more beneficial
self-training will be, provided that labeling during the
first self-training step is near perfect. d4 is the sim-
ilarity between the composite corpus of training and
additional data on the one side and the test data on the
other. When labeling during the first self-training step
would be perfect, the proportionality between d, and
its associated accuracy (accy) would be the same as be-
tween d; and its accuracy (accy), since there would be
no conceptual difference: both are measured between
perfectly labeled corpora.

m (Van Asch &
Daelemans, 2010).% In a first step, the most important
similarities are the similarity between training corpus
and test corpus (d1) and the similarity between train-
ing corpus + additional data and test corpus (dy). The
right column in Figure 2 depicts the accuracy of a reg-
ular test/train experiment (accy), and the height of
this column is inverse proportional to the similarity
dy. Consider the case when labeling is perfect during
the labeling step of a self-training experiment. In this
case, the left column of Figure 2 is the highest obtain-

It is known that accuracy o

4In this interpretation, the similarity value should be

smaller when corpora are more alike.
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able accuracy with self-training (accy). The perfectly
labeled composite corpus serves as the training cor-
pus. More data often leads to a higher performance
e.g. Daelemans et al. (1999) and for that reason the
left column is made higher than the right column.

The difference between accy and acc; is the dashed
column, which is the gain, obtained with (perfect) self-
training, over a regular experiment. The performance
indicator can be defined as

accy

accy

& (8)
if § is larger than 1, self-training gain can be expected;
if § is smaller than 1, no gain is expected from self-
training. Since we want to predict performance gain
without running experiments, the accuracies are not
available, but it is possible to use the similarities in-
stead. In addition, the similarity between the unlabeled
data and the test data (d3) can be used as a proxy for
dy. Rewriting the performance indicator such that its
outcome is binary then yields:

d
5 |1l 9)
ol
d3

If 0 is +1, gain is expected; if § is -1, no gain is ex-
pected. The predictive power of this performance in-
dicator is tested for part-of-speech self-training exper-
iments in the next section.

6. Experiments

The corpus, the experimental setup, the evaluation
method and the performance indicator have been pre-
sented in the previous section. In this section, these
elements are used to conduct the experiments. First,
the correlation coefficient for the different similarity
measures is retrieved. Next, the self-training experi-
ments are discussed.

6.1. Correlation r2

The British national corpus contains nine domains,
making it possible to select (g) = 36 different com-
binations of domains. The sets are used to conduct
straightforward test/train experiments. Since it makes
a difference whether a domain is selected as the first,
i.e. as training corpus, or as the second, i.e. as test

corpus, 36 - 2! = 72 experiments can be run.

By running the 72 part-of-speech tagging experiments,
it is possible to compute the r? between the similarity
measures between the test and training corpus on the
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one hand and the accuracy of the experiment on the
other. In practice, each of the 72 experiments is a 25-
fold cross-validation experiment. The training corpus
is divided into five equal parts and the same is done for
the test corpus. Next each training part is combined
once with each test part in a part-of-speech tagging ex-
periment with MBT. The final part-of-speech tagging
accuracy and the similarity value are the averages of
this cross-validation setup.

These experiments can be run while varying the simi-
larity measure. The different correlations that are ob-
tained in this manner will be used to differentiate the
better from the worse similarity measures.

Table 2. The 72 correlation coefficients for different simi-
larity measures. The correlation is computed between sim-
ilarity value and accuracy for 72 part-of-speech tagging ex-
periments.

2

MEASURE r

RENYI 0.083 — 0.987
KULLBACK-LEIBLER 0.986

SKEW 0.224 — 0.985
sUWR 0.874
JENSEN-SHANNON 0.863
OVERLAP 0.051

Table 2 shows the correlation coefficients r2 for the
selected set of similarity measures. Since the Skew and
Rényi divergence contain a parameter «, a range of
correlation coefficients is reported for these similarity
measures.

The asymmetry of a measure M is the property that
makes that the order of the distributions has an in-
fluence: M(P,Q) # M(Q,P). Because all measures
but the Jensen-Shannon divergence are asymmetric,
the reported 72 is an average value. For each run of
72 experiments, nine correlations are computed. One
correlation for each set of 8 experiments for which the
test corpus is the same. Averaging these values gives
the values of Table 2. If all 72 experiments would
be used to calculate a single overall 72, the value for
the Jensen-Shannon divergence would be too low since
this measure cannot accommodate to the asymmetry
of a part-of-speech tagging experiment: the similar-
ity value is the same for JS(P,Q) and JS(Q, P), but
the accuracy will be different. Splitting the computa-
tion of r? into a separate r2 associated with each dif-
ferent test corpus, overcomes this incongruence, since
JS(P,Q) and JS(Q, P) are no longer used for the cal-
culation of the same 2. Averaging all r?’s will aggre-
gate the separate correlations to a single number.
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As can be seen in Table 2, all measures show a good
correlation except for overlap, which has been included
for contrast. Two examples plots are given in Figure 3,

. . 2
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Figure 3. Plot of two correlations between similarity value
and part-of-speech accuracy for 72 experiments.

The parameterized divergences can also be adapted in
such manner that they perform better or worse. The
Rényi divergence has been applied with a varying from
0.02 to 0.98 in steps of 0.02. The higher «, the better
the correlation. The Skew divergence with « values
varying from 0.02 to 0.98 in steps of 0.02, varying from
0.9805 to 0.9995 in steps of 0.0005, and varying from
0.9995005 to 0.9999995 in steps of 5.10~7. The higher
a, the lower the correlation. Because the correlation
of the Skew divergence declines much slower than the
correlation of the Rényi divergence, more and smaller
steps are computed for the Skew divergence.
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6.2. Self-training gain prediction

The British National Corpus consists of nine domains
and a set of three different corpora is needed to carry
out a self-training experiment. This means that there
are () = 84 possible sets. Since the order is impor-
tant, and there are 3! permutations possible per set.
In the end, this adds up to 504 experimental setups,
using each domain either as training data, test data,
or additional data.

As mentioned in Section 5.2, the baseline F-score when
each self-training setup is expected to be beneficial is
25.61%. It should be stressed that a whole set of self-
training setups are tested in this paper. As the base-
line indicates, self-training may help performance, but
it is not guaranteed. When examining a self-training
setup for a single run of natural language processing
task, one should be aware of the fact that a positive (or
negative) outcome may be attributed to the corpora
that have been selected. The single outcome should
not give rise to conclusions about the general usability
of the self-training technique for that task.

In this paper, when the 504 setups are tested during
self-training experiments, only 74 experiments benefit

from self-training. Leading to an F-score of %
= 25.61%.

When self-training is beneficial, the average perfor-
mance gain is 0.07%, which amounts to an absolute
difference of ~985 tokens that are labeled correctly
thanks to self-training. When self-training is harm-
ful, the average performance loss is 0.09% or an ex-
tra of ~1284 incorrectly labeled tokens. Overall, self-
training has only a minor influence on accuracy, but
even this minor influence can be predicted as is shown
in the following experiments.

The derivation of the performance does not put severe
constraints on the similarity measure that needs to
be incorporated. The only requirements being that
the value of the measure should never switch sign and
that more similarity should lead to a smaller value.
The 504 experiments are repeated while the similarity
measure is replaced by one of similarity measures that
are presented in Section 3.

We run a full round of experiments for the follow-
ing similarity measures: Jensen-Shannon, Kullback-
Leibler, sUWR, overlap, Rényi divergence with o vary-
ing from 0.02 to 0.98 in steps of 0.02, and Skew di-
vergence with « varying from 0.02 to 0.98 in steps of
0.02, varying from 0.9805 to 0.9995 in steps of 0.0005,
and varying from 0.9995005 to 0.9999995 in steps of



An analytical approach to similarity measure selection for self-training

50

400

301

201

Self-training F-score
B

Rényi

Skew

sUWR

Overlap
Jensen-Shannon 1
Kullback-Leibler
—— Baseline

-+

10r

40O %

. . . .
0.2 0.4 0.6 0.8
Correlation r?z between similarity measure and accuracy

1.0

Figure 4. The variance of the self-training F-score for sim-
ilarity measures that show different 72 correlations for the
accuracy of straightforward part-of-speech labeling exper-
iments and the degree of test/train-similarity as expressed
by that measure. Each point is a different measure. For
the parameterized measures (Rényi and Skew), each point
is the measure with a different « value, a €]0,1[. For the
Rényi divergence, an increasing « leads to a higher r2. For

the Skew divergence, an increasing a leads to a lower 72,

0.0000005.> The F-scores of these experiments are
plotted in Figure 4 and the F-scores are given in Ta-
ble 3. The y-axis indicates the F-score, the x-axis indi-
cates the correlation of the used measure, as reported
in Table 2.

Table 3. F-scores for different similarity measures when
used in the performance indicator §. Statistical difference
with baseline is indicated with *.

MEASURE F-sCoORE

RENYI 25.15 — 42.33*
KULLBACK-LEIBLER  40.49*

SKEW 33.13*% — 42.94*
sUWR 38.04*
JENSEN-SHANNON 41.72%*
OVERLAP 22.09

A first conclusion that can be drawn from Table 3
and Figure 4 is that it is almost always better to use
the performance indicator to predict whether a self-
training setup will be beneficial than to assume that
self-training is beneficial. Only the two similarity mea-
sures at the left of the figure fall below the previously

®Because of the large amount of data points for the
Skew divergence, with relatively small correlation differ-
ences, not all points are shown in Figure 4.
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reported baseline of 25.61%. These two are overlap
(r? = 0.051) and Rényi with o = 0.02 (r? = 0.083).

The second conclusion is that, in general, similar-
ity measures that are better correlated with accuracy
(higher r?) are more suited to be used as the core of
the performance indicator §. Although this observa-
tion holds in general, Figure 4 also shows that there
is a broad range of similarity measures that approach
the maximum F-score, provided that a certain degree
of correlation has been reached. It is even the case
that prediction appears to be less trustworthy when
the higher 2 scores are reached. The best Skew diver-
gence is with o = 0.82, associated with an r? value of
0.861 and reaching an F-score of 42.94%. Although a
feeble downward trend for the top 72 values can be ob-
served, there is no statistical difference® between e.g.
sUWR and Jensen-Shannon (p = 0.099). Ounly a larger
difference, like between Jensen-Shannon and overlap
(p = 9.1079), is statistically significant.

A higher 72 does not necessitate obtaining a higher F-
score. This fact can also be illustrated when straight-
forward accuracy is used as the similarity measure. As
mentioned before, the best way to predict the accuracy
of an experiment is by running that experiment. We
can derive a similarity measure from the accuracy of an
experiment: similarity value = m It is clear
that the correlation 72, computed as in Table 2, for this
measure is 1. This perfect similarity measure can now
be used in the performance indicator . The associated
F-score for self-training then becomes 40.49%, which
is not markedly better than using any other efficient
measure. Since there is no better similarity measure
available, this figure can be considered as a limitation
to the method of using correlation 72 as the selection
criterion for selecting the best measure for this task.
Indeed, if 72 would be the only factor into play, the
F-score when accuracy is used as similarity measure
should be highest. But this is not the case.

This observation has consequences on two levels. First,
r2 cannot be used as the single selection criterion for
selecting the best measure to be used in the perfor-
mance indicator, although a minimal 72 value is re-
quired. Second, the design of the performance indica-
tor may not be flexible enough to anticipate certain sit-
uations, such as a very unsuccessful first labeling step.
This implies that, even if you have built in the best
similarity measure, it remains impossible to correctly
predict all experimental setups for which self-training

SStratified approximate randomization testing of F-
score of the positive class has been used to assess the sig-
nificance of different labeling scores of the test set (Noreen,
1989). Implementation: www.clips.ua.ac.be/scripts/art
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is beneficial.

6.3. Influence of the o parameter

When examining the definitions of the Rényi and Skew
divergence, egs. (3) and (4), we can draw the following
conclusions on the influence of the o parameter on
the measure: For the Rényi divergence, it can be seen
that lowering « implies lowering the influence of the
test corpus (pY becomes smaller, and q,ifo‘ becomes
larger). As can be seen in Figure 4 by moving from
right to left, lowering the influence of the test corpus
leads to a deteriorated performance of the similarity
measure, after a small initial gain.

For the Skew divergence, lowering alpha also means
lowering the influence of the test corpus. Moving from
left to right in Figure 4, in the beginning, lowering the
influence of the test corpus improves the performance
of the similarity measure, but when an « value of 0.82
is reached, the best parameter setting is reached. Fur-
ther lowering of the influence of the test corpus will
eventually lead to performance decrease.

Conclusion and perspectives

In this paper we investigated the possibility to rank
similarity measures according to appropriateness for
self-training. Our approach offers an analytical and
systematic method to select the best-suited similar-
ity measure from a set of measures. This, in contrast
to the more frequent practical approach of testing all
similarity measures in order to find the measure fit for
the task. An additional advantage of the framework
is that it enables the investigation of other properties
besides linear correlation. This may be a stimulus for
further research focusing on objective ways to express
domain differences between corpora.

The machine learning task we implemented, is a self-
training part-of-speech tagging task, in which a sim-
ilarity measure is used to obtain a prediction about
the usefulness of the self-training setup. To predict
the usefulness, a performance indicator § has been de-
signed. We found that the r? of a similarity measure
can be used as a coarse selection criterion for selecting
a set of suitable measures.

The fact that the correlation cannot be used to sin-
gle out one best-suited measure can be attributed to
two interfering causes. The first cause being that the
correlation coefficient may disregard certain influen-
tial properties of similarity measures. The sensitivity
to relative frequency differences or the interdependen-
cies between tokens may be two of such undetected
properties. A second cause making the correlation ap-
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pear an insufficient selection criterion may be that the
effectiveness of the performance indicator § can be lim-
ited by its design. This last conclusion is corroborated
by the observation that incorporating a perfect sim-
ilarity measure (accuracy) does not lead to the best
performance.

For parameterized similarity measures (Rényi and
Skew divergence), we found that moderately lowering
the influence of the test corpus in the measure leads
to an increased performance. This observation may
contribute to the design of parameterized variants of
existing similarity measures (like e.g. a parameterized
sUWR). The newly introduced parameter should reg-
ulate the proportional influence of test and training
corpus.

In general, we can conclude that the use of similar-
ity measures in natural language processing is mainly
a trial-end-error approach. We made start at looking
into the various properties of similarity measures by
investigating the information carried by the correla-
tion coefficient. But, as our research showed, other
properties exist and following research could focus on
conceiving new measures that can express these prop-
erties in an objective manner.
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Abstract

In a variety of languages, compounds (i.e.,
lexemes consisting of more than one stem) are
written as one token. Identifying such com-
pounds together with their compound bound-
aries can help improve the quality of com-
putational linguistic tasks such as machine
translation and spelling correction. In or-
der to create annotated compound datasets,
we need to be able to identify compounds
in various languages. Since manual iden-
tification is very time consuming, we pro-
pose novel, language-independent approaches
to the identification of compounds in sets
of words. A range of methods has been
explored, including unsupervised machine
learning approaches. The most successful ap-
proach focuses on the identification of com-
pound boundaries by identifying irregulari-
ties in letter combinations, exploiting point-
wise mutual information values between let-
ter n-grams. The results of applying of our
methods to a collection of Dutch words show
major improvements over a word-based com-
pound identifier.

1. Introduction

In languages such as German, Russian, Finnish, Ice-
landic, Afrikaans and Dutch, the process of compound-
ing is highly productive. New compounds can be cre-

Appearing in Proceedings of BENELEARN 2013. Copy-
right 2013 by the author(s)/owner(s).
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ated by combining two or more simplex words into a
new word (van Huyssteen & van Zaanen, 2004). The
meaning of the compound depends on the meaning
of its parts. For instance, in Dutch, the compound
slakom ‘lettuce bowl’ consists of the simplex words sla
‘lettuce’ and kom ‘bowl’. The process of compounding
can be repeated, leading to compounds that have more
than two simplex components, such as slakomverkoper
‘lettuce bowl vendor’.

Due to the productive nature of the process of com-
pounding, fixed word lists will always be a limiting
factor in describing the dictionaries of languages that
allow for compounding. Automatic identification of
compounds and compound boundaries can help im-
prove upon the quality of linguistic applications such
as machine translators and spelling checkers. For in-
stance, being able to identify the parts of a compound
allows for the translation of the parts (for instance,
if fietspad ‘bicycle path’ is not in the dictionary, but
the compound boundary (fiets + pad) and the sim-
plex words fiets ‘bicycle’ and pad ‘path’ are known,
the word may still be translated). Similarly, spelling
correctors require knowledge of the process of com-
pounding to accept valid compounds.

In certain cases, the concatenation of simplex words
into compounds requires a form of “glue”. For in-
stance, instellingenmenu ‘setup menu’ contains the
simplex words instelling ‘setup’ and menu ‘menu’ with
the morpheme en serving as a glue. Such morphemes
are called linking morphemes (Booij, 1996; Wiese,
1996).

Note that in other languages, such as English, com-
ponents of compounds are written as separate tokens.
The identification of such multi-word compound units
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is not trivial (Mima & Ananiadou, 2000). While there
are certain similarities between multi-word compound
units and single token compounds, the differences are
to such an extent that they require a different approach

(Ryder, 1994).

Previous research concerned with splitting compounds
has been conducted primarily in the context of ma-
chine translation (Koehn & Knight, 2003; Garera &
Yarowsky, 2008; Macherey et al., 2011; Alfonseca
et al., 2008). In previous studies, monolingual and
bilingual approaches can be distinguished.

Several bilingual approaches have successfully used in-
formation from parallel corpora to identify compound
boundaries. Koehn and Knight (2003) break up Ger-
man compounds so that a one-to-one correspondence
to English content words can be established. Part-
of-speech tags and frequency information are used to
align German compound parts to their English trans-
lations. Similarly, Macherey et al. (2011) apply dy-
namic programming to find one-to-one mappings to
English translations of German and Greek compound
parts. The emphasis on finding correct translations
for compounds is also evident in Garera and Yarowsky
(2008). While their approach does not require bilin-
gual training text, the authors use cross language com-
pound evidence obtained from bilingual dictionaries;
an approach similar to Koehn and Knight (2003).

The purpose of these bilingual approaches is to im-
prove the quality of machine translation systems. For
their tasks, parallel corpora augmented with meta-
data are readily available. Monolingual methods aim
to identify compound boundaries without the need of
such information. Alfonseca et al. (2008) apply fre-
quency and probability based methods, and search for
compound components that occur in different anchor
texts pointing to the same document. The combined
features are used in a supervised machine learning clas-
sifier.

Research has been conducted on the segmentation of
words in morphemes. The Morfessor system (Creutz
& Lagus, 2005) implements an unsupervised method
for producing a segmentation of morphemes. Its task
is to model a language that consists of a lexicon of
morphemes, by looking at high-frequency n-grams in
unannotated corpus text. Segmentation is applied by
matching morphemes in the constructed lexicon to
words. As such, its approach is similar to our com-
pound component approach, described in Section 3.1.
Authors report precision scores as high as 63% and re-
call as high as 75% for English word type boundaries,
and precision of 85% and recall of 53% for Finnish
word type boundaries.
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Our research is different from previous work in sev-
eral regards. In the first place, our task is different
as we aim to identify compounds and not compound
boundaries. To achieve this, we investigate several un-
supervised methods. In the second place, our monolin-
gual data consists solely of individual lemmas, without
additional frequency data, POS tags or other meta-
information. As such, our methods can be applied to
identify compounds in languages where such informa-
tion is not readily available.

The task of identifying compounds in non-trivial.
There are even cases in which it is unclear whether
a word is a compound (without further context). For
instance, the word minister can mean ‘minister’ or
‘mini star’. In the first case, the word is a simplex
word, whereas in the second situation, the word is
a compound mini + ster. Such situations happen
regularly as certain affixes can also serve as simplex
words. For instance, vergeven ‘to forgive’ is not a com-
pound, but can be analyzed as one ver + geven ‘far
to give’. Another such affix is -lijk, for instance in man-
nelijk ‘manly’, but the simplex word lijk translates to
‘corpse’.

van Huyssteen and van Zaanen (2004) propose
two compound analysis systems for compounds in
Afrikaans, that recognize compound boundaries and
linking morphemes if present. The first system is based
on a longest string-matching algorithm that searches
for known (simplex) words at the beginning and at the
end of a potential compound. If the analysis of a po-
tential compound shows that it consists of valid and
shorter words from a word list, possibly glued together
using valid linking morphemes, the word is considered
a compound. This algorithm forms the basis of the
compound component identifier as described in Sec-
tion 3.1.

The second system is an unsupervised clustering ap-
proach that, based on k-means, groups words in either
a compound or non-compound class. The clustering is
performed based on shallow, word-driven features.

The final system is an unsupervised machine learning
classification approach that decides whether there is a
compound boundary or linking morpheme boundary
between any of the letters in the word. Using a sliding
window, all positions between letters in the word are
considered. The letters left and right of the between-
letter positions are used as features in the machine
learning classifier. The systems described in this pa-
per are unsupervised and as such do not require any
annotated data.
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2. Problem description

Ultimately, we would like to be able to develop sys-
tems that automatically identify compound and link-
ing morpheme boundaries given a compound. How-
ever, developing and evaluating such systems requires
datasets annotated with compound boundaries.

Unfortunately, only a very limited number of anno-
tated compounds datasets exist. For instance, the
CKarma dataset (CText, 2005; Pilon & Puttkammer,
2008) contains 72,849 annotated Afrikaans compounds
and for Dutch, the e-Lex dataset (see Section 4.1) is
available, containing 88,713 annotated compounds.

To create larger datasets of (manually) annotated com-
pounds, or to create such datasets for languages for
which no such datasets yet exist, access to a dataset
containing (only) compounds is required. The research
described here aims to tackle the problem of automat-
ically identifying compounds in large plain text cor-
pora.

Following the identification of compounds, the anno-
tation task is to manually identify the compound and
linking morpheme boundaries. Manually annotating
such a list of types is an expertise, time and resource
intensive task as each word has to be considered.

Systems that identify compounds in corpora should
aim for the identification of as many compounds as
possible (high recall), while limiting the incorporation
of non-compounds as much as possible (high preci-
sion). Compounds that are not identified by the sys-
tem will never be considered for manual annotation at
all, but non-compounds can still be discarded during
the compound boundary annotation.

3. System description

We have experimented with a variety of systems to
identify compounds given a set of words. First, we de-
scribe the compound component identifier, which is a
word-based approach. Second, we propose an unsuper-
vised clustering approach, which aims to identify com-
pounds based on a combination of shallow features.
Finally, we describe approaches that aim to identify
potential compound boundaries based on the point-
wise mutual information values between letters, which
indicate the regularity of letters occurring next to each
other. Letter combinations that do not co-locate reg-
ularly are likely to be compound boundaries.

The systems described here receive only a set of types
as input. No frequency information is given, because
often no reliable counts can be obtained. For instance,
for Afrikaans, no publicly available large scale corpus
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exists. In case a system requires additional informa-
tion, this is indicated in the description of the system.
Ideally, the developed systems are completely unsu-
pervised and language independent.

3.1. Compound component identifier

Based on the idea that compounds consist of two or
more meaningful lexical stems, van Huyssteen and
van Zaanen (2004) developed a system, called longest
string-matching, that identifies compound boundaries
in compounds. The algorithm takes a compound as in-
put and recursively searches a dictionary (containing
simplex words) for words that can be concatenated to
form a compound. The system is also able to deal with
linking morphemes, which are provided beforehand.

The compound component (CC) identifier follows the
idea of the longest string-matching approach closely.
However, in contrast to the longest string-matching
algorithm, the CC identifier does not have access to a
list of simplex words. The CC identifier solves this by
making use of all the words in the input dataset. To
be more precise, the CC identifier receives a compre-
hensive set of input data containing both simplex and
compound types. The CC identifier then searches for
types that can be constructed by concatenating two
or more other types from the set. If the CC identi-
fies such a construction, the system classifies it as a
compound.

The CC identifier is provided with a list of valid link-
ing morphemes beforehand. This information is lan-
guage dependent, so the system requires minor super-
vision by an expert. We have taken into account that
very short simplex words lead to over-generation of the
system (identifying too many words as compounds).
Specifically two letter words, which are typically func-
tion words, such as determiners, prepositions or con-
junctions, (for instance in ‘in’, op ‘on’, na ‘after’; or
en ‘and’) have a large negative impact. Despite being
valid simplex words, they can be used incorrectly as a
stem in a compound. For instance, the non-compound
inbedden ‘to embed’ can be split into in 4+ bedden ‘in
+ beds’. To solve this problem, we limit the minimum
component length to three letters.

3.2. k-Means identifier

The idea behind the k-means identifier (KM) is that
a combination of surface properties of words may be
enough to identify words as compounds. For instance,
because compounds are constructed using several sim-
plex words, on average they tend to be longer than
simplex words or contain more syllables. Obviously,
each feature by itself does not provide enough infor-
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mation to decide whether a word is a compound or
not, but a combination of features may yield useful
results.

The input of the KM identifier is, like the other sys-
tems we describe here, a set of types. Shallow features
are extracted, leading to a feature vector for each type.
The collection of feature vectors serves as the input of
a k-means clustering algorithm. The value of k de-
scribes the number of classes, which is set manually
beforehand. All possible combinations of the follow-
ing features have been used in the experiments.

word length the number of characters in the word;

longest vowel cluster length the length of the
longest sequence of adjacent vowels in the word;

vowel cluster count the number of vowel clusters in
the word (serving as a rough approximation of
syllable count);

cumulative bi-gram probability the sum of the
letter bi-gram log probabilities of the word (n-
gram probabilities are always smaller than 1, so
we take the absolute values of the log probabili-
ties);

cumulative tri-gram probability the sum of the
absolute values of the letter tri-gram log proba-
bilities in the word;

cumulative 4-gram probability the sum of the ab-
solute values of the letter 4-gram log probabilities
in the word;

cumulative 5-gram probability the sum of the ab-
solute values of the letter 5-gram log probabilities
in the word;

valid word regex classification boolean classifica-
tion based on a regular expression match that
yields false if a substring of the word consists of a
sequence of three non-alphabetic characters, oth-
erwise the word is classified as true. This feature
was added to reduce noise and the influence of
digit combinations in datasets.

3.3. Point-wise mutual information identifier

The approach we describe in this section is based
on the idea that compound boundaries can be found
where “unusual” letter combinations occur. The un-
derlying idea is based on the following observed prop-
erties of language:
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1. the unequal distribution of character n-grams
found in languages such as English and Chinese
(Ha et al., 2003);

2. our observation that in simplex and non-

compound words certain letter combinations oc-

cur more often in isolation than together.

These properties may be different between simplex
words and compounds, since compounds contain letter
combinations that disregard the unequal distribution
of letter sequences (specifically around the boundary
of the simplex words in the compound). To clarify,
a compound can consist of two simplex words each
by itself adheres to the non-linear distribution of let-
ter combinations (n-grams). However, the compound
boundary does not, because compound boundary let-
ter combinations simply consist of the beginning and
ending of the simplex components.

To measure the regularity of letter combinations, we
use the point-wise mutual information (PMI) metric.
The following paragraphs explain the process of calcu-
lating these values, but let us exemplify its use first
with the following example. The word boekenbeurs
‘book convention’ has a compound boundary between
boeken and beurs.! Figure 1 shows that the letter com-
binations on compound boundary enbe, en and be, oc-
cur more often in isolation than together. In other
words, the PMI value for the two bi-grams is low,
which shows that it is surprising that these characters
occur together.

The calculation of the point-wise mutual information
(PMI) metric between two letter n-grams, A and B is
calculated according to Equation 1. The probability
of the concatenated n-grams (AB) is divided by the
product of the probabilities of the n-grams by them-
selves. The results described here are all generated
using n = 2. Note that the results of the fraction
is always smaller than or equal to 1. Taking the log
leads to a negative result where smaller fractions lead
to larger PMI values. The calculation of the probabil-
ity of a letter n-gram is computed using the relative
frequency (see Equation 2).

pmi(A, B) = log P(A{D)(:l]B;)(B) (1)
_ count(X)
P(X) = |corpus| @)

The simplex boeken contains a linking morpheme
boundary, but this is irrelevant when identifying com-
pounds.
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PMI value

be-ur —
eu-rs —

en-be —
nb-eu —

ke-nb —

oe-ke —
ek-en —

bo-ek —

Figure 1. PMI values for the boundaries in boekenbeurs
‘book convention’. The dashed line is the mean, the dotted
line is one standard deviation below the mean.

Given a word, PMI values are computed by applying
a sliding window over the word. Equation 1 is applied
to each letter n * 2-gram, where the relative frequency
of the two adjacent letter n-grams constitute A and B
respectively. For a word of length k, this procedure
yields a set of k — (nx2) PMI values (see Equation 3).
Here pmig represents the application of the pmi func-
tion on the first letter n * 2-gram in the word. For
example, PMI for letter bi-grams in fietspad ‘bicycle
path’ yields a set of values for letter 4-grams: fiet, iets,
etsp, tspa and spad.

PMI = {pmi;}i= " (3)
After calculating PMI the resulting values are stan-
dardized according to Equation 4, where p is the mean
of the values and o is the standard deviation. The
standardized PMI values (z) are evaluated on their
distance to p. If a value exceeds a given threshold
parameter ¢, which signifies the number of standard
deviations from the mean, a word is identified as be-
ing a compound.

(4)

3.4. PMI edge detection identifier

To improve compound identification performance,
edge detection filters are applied to PMI values ob-
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tained from the system described in Section 3.3. Edge
detection is a technique widely used in the field of
signal processing to detect discontinuities in multi-
dimensional signals. A small matrix, called a kernel,
is applied to the signal, to either sharpen or smoothen
the input. This is accomplished by means of convolu-
tion between the kernel and the input signal (Ziou &
Tabbone, 1998). Since our data is of a one-dimensional
nature, we utilize vector kernels instead of matrices.
It is expected that compound boundaries (i.e., dips in
PMI values) are more easily detectable after applica-
tion of an edge detection kernel.

Kernel convolution usually requires values from out-
side the range of the PMI values. Therefore, “edges”
(i.e., the first and last PMI values) are extended with
length k, which is calculated according to Equation 5.
Then, a sliding window is applied and dot products of
the kernel and the PMI values are calculated accord-
ing to Equation 6. Resulting values are standardized
according to Equation 4 and evaluated on the number
of standard deviations they differ from the mean. As
such, evaluation is identical to that of “regular” PMI
values, described in Section 3.3.

|kernel|
k=——] (5)
|kernel| [PMI
PMIfjtered = Z pmi; ;) kernel;
i=0
=0

(6)

Two types of convolution kernels are evaluated here,
based on Gaussian (Equation 7) and sigmoid (Equa-
tion 8) functions respectively. Kernel values are calcu-
lated based on a template and an input parameter p.
To ensure that the output values are of the same rel-
ative magnitude as the input values, the kernel values
are normalized so that the sum of their values equals 1.
All kernels we evaluated are of length three (yielding
context k= |3] =1).

1 1 1
kernelGaugsian’p = {3 - P g + 2p, g - p} (7)

1 11
kemelgigmoid,p = {3 P33 —|—p} (8)
As shown in Figure 2 (compared to Figure 1) dif-
ferences between PMI values get larger when edge-
detection is applied to the PMI of the word boeken-
beurs. It is expected that edge detection techniques
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PMI value

be-ur —
eu-rs —

en-be —
nb-eu —

ke-nb —

oe-ke —
ek-en —

bo-ek —

Figure 2. Sigmoid edge detection with p = 1 applied to
PMI values for the boundaries of the word boekenbeurs.
The dashed line is the mean, the dotted line is one standard
deviation below the mean.

amplify compound boundaries and help identifying
compounds.

4. Results
4.1. Dataset

All systems are tested on the Dutch e-Lex
dataset (http://tst-centrale.org/nl/producten/
lexica/e-1lex/7-25), which contains a total of 96,219
morphologically segmented lemma entries. The mor-
phological segmentations of the lemmata were used
during evaluation of our systems to determine which
words were compounds. We identified compounds by
parsing hierarchical morphological segmentations. A
total of 68,686 lemma entries that contain composi-
tional morphology were identified as compounds. The
remaining 27,533 words are simplex words possibly an-
notated with derivational morphology structure.

4.2. System results

The results of all systems can be found in Table 1.
The compound component identifier has the highest
precision, which was expected as it exploits the fact
that compounds are built from simplex words and e-
Lex contains a substantial amount of simplex words.
The CC identifier does not have any manually tunable
parameters. As such, it can not be modified to improve
recall.
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Table 1. Results for all systems on the e-Lex dataset. P
is precision, R is recall and F; is Fi score. For k-means
experiments, feature combinations for optimal Fj scores
are selected. For the PMI experiments, N, G and S
indicates that no edge detection, Gaussian or sigmoid
filters have been applied, p indicates the kernel parameter
value and t refers to the threshold used for classification.

Ttalics indicate system dependent best results. Overall
best results are shown in boldface.
P R F
Compound component identifier
89.603 63.268 74.166
k-means identifier
max Fy5, k=2 83.842 61.573  71.002
max Fy, k=2 76.236  80.134  78.136
max Fy, k=2 76.236  80.134  78.136
Point-wise mutual information identifier
N,t=1 74.683 73.842  74.260
N,t=0.1 73.092 99.999  84.454
N,t=0.3 73.103  99.987  84.457
G,p=03,t= 74.754 78.051 76.367
G,p=0.5,t=0.2 73.096 99.999  84.456
G,p=0.7,t=0.2 73.118  99.975 84.463
S,p=03,t=1 73.816  88.989  80.695
S,p=-19,t=0.1 73.093 99.999  84.455

The k-means identifier is applied to the data with k =
2 target classes. In each experiment, the class that fits
the compound class best, is selected as the compound
class. The best results are found when using only a
sub-set of the features. When optimizing on Fj 5, the
longest vowel cluster length and cumulative 5-gram
probability features are used. When optimizing F; or
F5, only the vowel cluster count feature is used.

In an attempt to improve precision and recall values
separately, experiments have been conducted by max-
imizing commonly used Fjg measures. The Fp 5 mea-
sure weights precision higher than recall and the F5
measure puts more emphasis on recall than precision
as shown in Equation 9. It is interesting to note that
the Fy5 optimized k-means identifier is able to pro-
duce results comparable to the compound component
identifier, even though the sources of information are
completely different.

precision - recall

Fg=(1+p%- (9)

(82 - precision) + recall

The threshold ¢ for evaluating PMI values is set to val-
ues between 0.1 and 3.5 standard deviations from the
mean. The best F; and recall scores for all three PMI
variants (unfiltered, sigmoid and Gaussian) are found
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Fy score
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0.0

-5 0 5
p values

Figure 3. F} score results for the sigmoid filter with varying
t and p values.

with ¢t values between 0.1 and 0.3. The best results
of all three systems are comparable. Best precision is
obtained with slightly higher thresholds, ranging be-
tween 0.5 and 1. Increasing the threshold to values
higher than 1 rapidly degrades performance: unfiltered
PMI values evaluated to a threshold of 1.5 already re-
sult in a Fj score of 45.570, while a threshold of 3.5
only yields a F} score of 1.744, which is similar to the
Gaussian and sigmoid results.

Precision obtained by PMI variants never reach those
generated by the compound component and k-means
methods.

Even though the Gaussian, sigmoid and unfiltered
PMI settings all yield significantly different distribu-
tions of Fy scores , their behavior is similar when vary-
ing the values of the parameter p (varying the impact
of the values in the context). Both increasing or de-
creasing p to a certain extent lead to similar precision,
recall, and F} scores. The best F; scores are obtained
with p around 0. Performance rapidly decreases with
larger absolute p values. This is illustrated in Figure 3.
Here we see the Fj score results of the sigmoid filter
with various values for ¢ and p. This indicates that
essentially the application of the kernels does not lead
to improved results.
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5. Conclusion

In this paper we have investigated different approaches
to the identification of compounds in a set of words.
These systems will be used to select compounds that
will be structurally annotated for compound bound-
aries by human annotators in a later stage.

The compound component (CC) system is based on
a similar system that has been used in the past to
identify compound boundaries automatically. The CC
system identifies compounds in a set of words by iden-
tifying components (which are simplex words) in the
given set of words. This system leads to a high preci-
sion. A second approach, based on the unsupervised k-
means clustering using shallow features of words leads
to similar performance using different information.

We compared these results against a third approach,
which is based on point-wise mutual information
(PMI) values of the consecutive letter combinations
in the word. These systems result in the highest recall
(near 100%) and F; scores (over 84%).

As future work, we are interested in using the PMI
system to identify the actual compound boundaries
(similarly to the use of the original CC system and
others described as previous research earlier). How-
ever, preliminary results show that the PMI systems
also identify boundaries that are not actual compound
boundaries, but may correspond to other morpholog-
ical boundaries. In the setting described here, this is
not a problem. A word is considered a compound if
at least one boundary is found. However, identifying
too many boundaries has a negative effect on the pre-
cision of the identification of compound boundaries.
Future work will concentrate on the development of
systems that identify compound boundaries based on
the compound identification systems.

Ultimately, we would like to use these systems to iden-
tify potential compounds from large plain text cor-
pora. For Dutch we plan to identify compounds in the
SoNaR corpus (Oostdijk et al., 2008; Oostdijk et al.,
In press). SoNaR is a large collection of written con-
temporary Dutch texts. It contains approximately 500
million tokens and as such it provides a good start-
ing point to identify naturally occurring compounds
in Dutch.
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Abstract

We investigate the use of compression-based
learning on graph data. General pur-
pose compressors operate on bitstrings or
other sequential representations. A single
graph can be represented sequentially in
many ways, which may influence the perfor-
mance of sequential compressors. Using Nor-
malized Compression Distance (NCD), we
test a sequential compressor versus a na-
tive graph compressor. We use both syn-
thetic, randomly generated graphs and real-
life datasets. We conclude that, even un-
der adverse circumstances, sequential repre-
sentations contain enough structure for shal-
low algorithms to perform inference success-
fully. Algorithms that operate directly on the
graph representation usually require a con-
siderable increase in resources, but do allow
for an increase in performance also.

The mantra of compression-based inference is that
compression equals learning. If we can compress data,
we must have found some structure, we must have
learned something. Conversely, if we have learned
something about data, we should be able to use that
knowledge to represent our data more succinctly. !

The idea of compression-based learning is expressed
in two related subjects: Minimum Description Length

'Other features commonly associated with learn-
ing, such as generalization will, so the adherents of
compression-based learning argue, be optimized along
with the optimization of compression. See, for instance
Griinwald, 2005; Grinwald, 2007.

Appearing in Proceedings of BENELEARN 2013. Copy-
right 2013 by the author(s)/owner(s).
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and Kolmogorov Complezity. Minimum Description
Length (Griinwald, 2007) builds a statistical frame-
work on the principle that a good model is one that
can be used to describe the data in as few bits as pos-
sible. Kolmogorov Complexity (Li & Vitanyi, 1997)
is concerned with the mathematical expression of the
information content of data. It states that if we can
find some short description of a dataset (ie. compress
it) then the total information content must be below
the length of that description.

In this paper we investigate the use of these
compression-based methods on graph data. Examples
of such data are social graphs, transportation graphs,
trade networks or semantic graphs. The graph is a
powerful and versatile representation. Most appli-
cations of compression-based learning use sequential
models, such as deterministic finite automata or block-
sorting compressors, which operate on bitstrings. If we
have data in the form of a graph, we can translate it
to a bitstring, of course, but in this transformation
we complicate our problem. For different orderings of
nodes, the graph is the same, but the bitstring changes
radically. To a simple compressor, the two bitstrings
may not share very much structure, even though they
represent the same graph. We will call this the prob-
lem of isomorphism.

If this issue really ‘blinds’ the sequential compressors
to the structures in the graph, one option is to in-
vestigate compressors that operate on the level of the
graph representation, for instance by finding frequent
subgraphs or clustering the graph. The methods do
not suffer this problem of isomorphism, but as a result
they are more expensive than their sequential cousins.
In this paper we hope to provide a first indication of
how far the sequential approach will go, and whether
the native approach will let us continue on from there.

There is a wealth of research available on machine
learning and data mining both within single graphs
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and on sets of graphs (see for instance Cook & Holder,
2006). In this paper we do not share the data mining
goal of extracting interesting features and models from
the data, but only the goal of performing inference, us-
ing the compressors and their learning techniques as
black boxes, and evaluating the the results of a chosen
inference task.

Normalized Compression Distance

From the many machine learning methods based on
principles of compression, we choose Normalized Com-
pression Distance (NCD) as a representative method
of compression-based learning. The choice is a practi-
cal one: NCD is a simple method which requires noth-
ing more than a general purpose compressor. Any
domain-specific knowledge we wish to use about our
data (eg. it represents a graph) can be added to the
compressor. We proceed under the assumption that
conclusions reached about the performance of NCD
on graph data will translate to MDL and other frame-
works.

We will provide a brief, intuitive explanation of the
principles involved, sufficient to understand the ideas
presented in this paper. For a more in-depth and rig-
orous treatment we refer the reader to (Li et al., 2004)
and (Cilibrasi & Vitdnyi, 2005). For a general intro-
duction to Kolmogorov complexity, see (Li & Vitanyi,
1997).

Kolmogorov complexity

Kolmogorov complexity is a notion of information con-
tent based on two principles: (a) all data can be rep-
resented as a bitstring (b) the shorter this string can
be described, the less information is contained in it.

The second principle is formalized in two steps. First,
by ‘description’ we mean a description in a formal lan-
guage that is maximally expressive. To formalize ex-
pressiveness, we require that the method of description
is Turing-complete (of equivalent strength to a Turing
machine). By the strong Church-Turing thesis, this
suggests that there is no reasonable way of defining a
more expressive method of description.

We choose the Turing machine as a canonical method
of description, and we fix some enumeration of all Tur-
ing machines {T;}. There exists a Universal Turing ma-
chine U that is defined as follows:

U((i,p)) ~ Ti(p)

That is, if U’s input consists of two bitstring arguments
i and p, combined with some computable pairing func-
tion (-, -}, then U computes the same function as T; on
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input p if T;(p) halts, or fails to halt if T; fails to halt.
U provides our true formalization of ‘description’. If
our data is x, and for some y = (i,p), U(y) = x, we say
that y is a description of x on our reference universal
Turing machine.

We can now say that with respect to U, there must be
a minimal description for any given data:

X}

Ku(x) = min{ly| : U(y)

The result that makes Kolmogorov complexity a use-
ful measure of information content is that Ky (-) is
only marginally dependent on the choice of U. If
we suppose that there is another universal description
method, V, we might ask what the expected difference
is between Ky (x) and Ky (x). Let kv(x) is the shortest
program for x on V. Since, U is universal, we know
that it can compute ky by simulating V. Somewhere
in our enumeration of Turing machines {T;}, there is
a T, which computes the same function as V. This
simulation is a program for x on U which is a bound
for the shortest program on U:

Ku(x) < KTy, kv (x))]
= [kv(x)[ + [ +p(v)
=Ky (x) + 0(1)

Where p(v) is the penalty (ie. the additional bits)
that the pairing function requires to store its two ar-
guments in a separable way. We require that this is
only dependent on v. The final line shows that Ky(+)
and Ky (+) differ only by a constant term, which is inde-
pendent of x. To summarize: we may differ in opinion
on how much information our data contains, but only
by a constant amount.

In some contexts, it is desirable to distinguish between
the classical Kolmogorov complexity and the prefix-
free Kolmogorov complexity. In the context of Nor-
malized Compression Distance the distinction does not
matter.

A complete treatment of Kolmogorov Complexity is
outside the scope of this paper, but the following prop-
erties are important to understand.

K(-) is uncomputable There can be no algorithm
which computes the Kolmogorov complexity of x
for all x. It can, however, be bounded from above,
and for every algorithm which bounds it, there is
another algorithm which provides a better bound.

All computable compressors approximate K(-)
If we have some compressor for our data x (say
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GZIP) we can find the decompression algorithm
somewhere in {Ti}, say as Tq. We can have
a description on U as U({g,z)) = x so that
Ku(x) < |zl + O(1). In this way, any computa-
tional structure in x is taken into account in K(x),
and K(-) can be approximated by any computable
COMPressor.

This gives us the basic philosophy behind all transla-
tions of Kolmogorov complexity to the realm of prac-
tical applications: we approximate Kolmogorov com-
plexity by some learning algorithm or compressor.

Finally, we define conditional Kolmogorov Complexity
K(x | y). Where regular Kolmogorov Complexity is
defined as the shortest program which produces x, the
conditional variant is defined as the shortest program
which produces x when provided with y. A complete
treatment is available in (Li & Vitanyi, 1997).

Normalized Information Distance (NID)

The length of the shortest program to get from y to
x intuitively suggests that K(- | -) can be seen as a
similarity measure. Clearly, very little is required to
transform a string into itself, or into a very similar
string, whereas for two random strings, only a program
that stores the second in its entirety can make the
transformation.

This intuition prompted Li and Vitdnyi (Li et al.,
2004) to investigate the use of Kolmogorov Complex-
ity as a metric of computational similarity. To acquire
a true metric, some problems have to be solved. The
first is that K(- | -) is not symmetric: it takes a small
program to blank out the collected works of Shake-
speare, but the reverse is a more complex operation.
The first step, then, is to define the (symmetric) In-
formation Distance:

ID(x,y) = max [K(x | y), K(y | x)]

The second issue is one of scale. If two strings of
a million bits differ by 1000 bits, we might consider
them quite similar, whereas two strings of 1000 bits
that differ by that amount could not be more differ-
ent.? Therefore, we would like to take the length of
the strings into account. This gives us the Normalized

information Distance (NID)

) = max [K(x |y), K(y | x)]

NID(x
’ max [K(x), K(y)]

2Note that this is only an intuitive example. If two
strings differ in exactly every bit, a very short program
transforms one into the other, so by NID, they are very
similar.
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We would like to approximate this by replacing each
occurrence of the Kolmogorov complexity with an ap-
proximation by a compressor, which we will call C. As
most compressors do not work on a conditional basis
(expressing data given some existing data), we want
to rewrite the conditional K’s as nonconditional ones.
To achieve this, we accept beyond the constant term
uncertainty that is innate to Kolmogorov Complexity,
a further logarithmic inaccuracy. This allows us to
rewrite as

NID (x.y) = max [K(x, m)ax KE37 E - x) — K(y)]
~ max [K(xy) — K(x), K(yx) — K(y)]
- max [K(x), K(y)]

If we replace the Kolmogorov complexity with a com-
pressor C, we get the normalized compression distance
C(xy) — min [C(x), C(y)]

max [C(x), C(y)]

NCD(x,y) =

This step also includes the assumption that our com-
pressor is roughly symmetric (C(xy) = C(yx)).

When our data is represented as a graph, rather than
a string, we replace the notion of concatenation of
strings by concatenation of graphs. That is, we com-
bine the graphs x and y into a single (disconnected)
graph.

Methods

Our aim is to test a sequential and a graph-based com-
pressor on an inference task for a variety of graph
data. To ascertain the performance of the compres-
sors, we generate graphs from different sources, calcu-
late their NCD distances and see whether a clustering
algorithm can reconstruct the original sources as clus-
ters. Datasets and source code for these experiments
are available. 3

Node ordering

An important and subtle concern is the ordering of
nodes in the sequential representation of our graphs.
This issue is detailed very well by Kang & Faloutsos,
2011. As shown, there are various algorithms to deter-
mine node orderings that bring out a lot of the graph’s
inherent structure in the adjacency matrix, allowing a
sequential compressor to exploit it. We could use sub-
stantial resources to find a good ordering of nodes to

Shttp://www.peterbloem.nl/benelearn2013
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improve the performance of the sequential compressor.
If we did, however, the extra computation might mean
that the compressor is no longer a shallow model. To
maintain the sequential compressor as a representative
example of shallow models, the node ordering should
be cheap to establish from a random ordering, prefer-
ably in linear time.

Since we are testing the capacity of the general purpose
compressor to perform inference despite the problem of
isomorphism, we will actually present it with a worst
case scenario. We use a random ordering of nodes for
all graphs. If the general purpose compressor still out-
performs the random baseline under these conditions,
it will tell us that it is, at least in part, resistant to the
problem of isomorphism.

Experiment 1: Synthetic data
We generate graphs from four models.

The first is the classic Erdés-Rényi (ER) model, where
a uniform random choice is made from all graphs with
n nodes and m links. The second is the Barabasi-
Albert (BA) model (Albert & Barabdsi, 2002), which
grows a graph from a set of ng unconnected nodes, one
node at a time, connecting each new node to k distinct
existing nodes where the probability that a given ex-
isting node is chosen for a connection is its degree,
divided by the sum of the degrees of all nodes. Thus,
under the BA model the more links a node has, the
higher the probability that it will accrue even more.
This effect causes the degree distribution of a BA net-
work to become scale-free (ie. it follows a power law).

Since we want there to be some challenge in separat-
ing the two classes of network, we ensure that they
have the same number of nodes and links. To achieve
this, we first generate the BA networks, count their
nodes and links and use these as parameters for the
ER model.

We also include graphs from the fractal graph gener-
ation algorithm from (Song et al., 2006). We set the
hub-parameter which determines the level of fractality
(as a trade-off with the level of small-worldness) to 0.0
(for a small world network) and to 1.0 (for a fractal
network).

Once we have this dataset, consisting of four gold clus-
ters, we calculate the NCD with a given compressor for
every pair of graphs in the dataset, giving us a sym-
metric matrix. We use the k-medoids algorithm to
cluster this set into four clusters.

To assess the performance of the clustering we label
the clusters so that the accuracy is maximized (essen-
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tially assigning the optimal labels). Clearly, this would
be cheating when testing a classifier, but since we are
only interested in the clustering aspect, it gives us a
straightforward performance measure.

As a random baseline, we generate a random distance
matrix with every distance a uniform random value in
[0,1), and run the clustering algorithm on that.

Experiment 2: Real-life data

In this experiment we sample subgraphs from large,
existing graphs. We sample by choosing a random
node uniformly from all nodes and performing a ran-
dom walk of length n. We then extract a subgraph
containing the nodes encountered and any links con-
necting two encountered nodes. We replace all node
and link labels with a single canonical symbol.

With this dataset of subgraphs, we proceed as be-
fore, calculating the distances between the subgraphs
and clustering them into as many clusters as we have
sources, to see whether the resulting clusters match
the sources.

We use the following datasets:

cellular The cellular network of the E. Coli bac-
terium.  (Jeong et al., 2000) Acquired from
http://www.nd.edu/~networks/resources/
metabolic/index.html

neural The neural network of the C. Elegans ne-
matode worm (ignoring link directions). (Acha-
coso & Yamamoto, 1991; Watts & Strogatz,
1998) Acquired from http://toreopsahl.com/
datasets/#celegans

co-purchase A graph of items commonly pur-
chased together on internet retailer Amazon.com.
(Leskovec et al., 2007) Acquired from http://
snap.stanford.edu/data/amazon0302.html

Compressors
GZIP

We use GZIP as our general purpose compressor.
Specifically, in our experiments, we use the implemen-
tation of GZIP that is part of the standard Java SDK.
To store a graph with GZIP, we flatten the lower half
of its adjacency matrix into a bitstring and store this
together with a list of the node and link labels. We use
Java object serialization to take care of delimiting the
label data and translating it to bits. (Since all graphs
in our experiments have a single label, this is unlikely
to affect the outcome).
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SUBDUE

Subdue (Jonyer et al., 2004; Ketkar et al., 2005) is
an algorithm for finding frequent subgraphs in graph
data. The algorithm searches for the subgraph that
maximally compresses the data. The body of the al-
gorithm is essentially a beam search through the space
of subgraphs. It consists of three main routines:

Subgraph matching This is an algorithm for find-
ing the occurrences of a given subgraph in a graph.
The method used is detailed by Bunke & Aller-
mann, 1983. Since this is a semi-exhaustive search
for the solution to the NP-complete problem of
subgraph isomorphism, the matching can only be
solved for very small subgraphs. Unfortunately,
even with subgraphs of four or five nodes, the
matching is too slow in combination with the
number of times it is executed to calculate a full
distance matrix. To combat this issue, we remove
all but the first b;;, o, elements from the search
queue after it is sorted at each iteration, effec-
tively turning the algorithm into a beam search.

MDL Scoring This routine takes a subgraph, finds
its occurrences in the data by the previous routine
and deletes these from the data. The subgraph is
then stored once, together with the remainder of
the data and a list of where the subgraph should
be attached to reconstruct the original data. See
the appendix for an exact description.

Subgraph search This is the ‘outer loop’ of the al-
gorithm. Starting with a graph of a single link
between two nodes, it searches through the space
of all connected graphs by extending each cur-
rent candidate by one link at a time (possibly by
adding a new node as well). The buffer of cur-
rent candidates is sorted by MDL score, and the
candidate with the highest score is extended to
create new candidates. At each iteration all but
the top bgyter candidates are removed, turning
the search into a beam search.

Algorithm 1 shows a broad description of the whole
procedure.

The graph matching search (the first line of the score
function) allows for inexact matches of the subgraph.
In these cases, we use a rough upper bound of the num-
ber of bits required to transform the stored subgraph
into the subgraph that is actually present in the data.

PARAMETER SETTINGS AND SPECIFICS

All graphs generated contain 100 nodes. In the BA-
model, we attach one node each step, giving 100 links

30

Algorithm 1 Pseudocode for the Subdue algorithm

G: the data graph
bouter: the beam size

S « [Ky] # initialize the list of substructures
with a graph of a single node

loop
s < head element of S
add all extensions of s to S
sort S by score(s’, G) for s’ € S
remove all but the first b elements of S

function score(s’, G)
replace occurrences of s’ in G with node N
annotate links to N with the nodes in s’
return nr of bits to store the edited G and s’

also. Note that this makes the BA graphs UAGs. For
more nodes attached per step the clustering problem
would become more difficult. The random graphs are
generated with the exact same number of nodes and
links. The fractal graphs we generate to depth 2 by
adding 4 ancestors at each side of each link and 1 extra
link between the groups of ancestors. This results in
networks of 90 nodes and 100 links.

For each source, we generate 3 graphs.

The Subdue algorithm has a lot of parameters. During
the search we return only one best subgraph. Our
beam width at the top level (byyter) is set to 5. The
beam width in the graph matching routine (b} ep) is
set to 10. We run the search for 10 iterations, limiting
the size of the subgraph used to 5.

We let the k-medoids algorithm run for 20 iterations.
This is more than enough for convergence in all exper-
iments.

Results

Table 1 shows the results on randomly generated
graphs. Table 2 shows the results for subgraphs sam-
pled from real-life datasets.

Conclusions and future work

Our experiments show that sequential, general purpose
compressors are better at performing graph inference
than expected. Despite the random ordering of the
nodes, the bitstring contains enough shallow patterns
that a compressor like GZIP can tell the two types of
fractal graphs apart, and only struggles with the dif-
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Table 1: Confusion matrices for various compressors.
Columns represent the clusters found by the k-medoids
algorithm. To calculate the error, we label the result-
ing clusters so that the error is minimized (ie. reorder
the columns of the confusion matrix to maximize the
sum of the diagonal). We report the mean error (1 -
the sum of the diagonal) over 10 experiments (and the
standard deviation in brackets) below each confusion
matrix. The confusion matrix shown is always for the
first experiment in the run.

ER 0.17 0.083 0 0

BA 0.083 0.17 0 0

fractal (pure) 0.083 0 0.17 0

fractal (small world) | 0 0 0 0.25
(a) Random baseline: error 0.46 (0.11)

ER 0 025 O 0

BA 0 025 0 0

fractal (pure) 0 0 025 0

fractal (small world) | 0 0 0 0.25

(b) GZIP: error 0.27 (0.12)

ER 025 0 0 0
BA 0 0.25 0 0
fractal (pure) 0 0 025 0
fractal (small world) | 0 0 0 025

(c) Subdue: error 0.14 (0.14)

Table 2: Results for the experiment on natural
datasets.
cellular 0.11 0.11 0.11
neural 0.11 0.11 0.11
co-purchase | 0.11 0 0.22

(a) Random baseline: error 0.43 (0.11)

0.33 0 0

neural 0.22 0.11 0

co-purchase | 0 0.22 0.11
(b) GZIP: error 0.28 (0.17)

cellular

cellular 033 0 0
neural 0 033 0
co-purchase | 0.33 0 0

(¢) Subdue: error 0.34 (0.17)
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ference between the random and BA graphs. This is
particularly interesting considering the high resource
requirements of most algorithms for graph inference,
and the low resource use of general purpose compres-
Sors.

This result suggests that at least some inference on
graphs can be performed by sequential algorithms on
a sequential representation in linear time, with decent
results.

As for the graph-compressors, we see a small improve-
ment relative to the sequential compressors for a strong
increase in computational resources. Subdue as used
in this paper is a relatively simple compressor, which
isolates only a single subgraph for compression and
we tested it only at modest parameters. The publi-
cations surrounding Subdue offer much more complex
solutions (such as the induction of graph grammars
(Jonyer et al., 2004)). To investigate the promise of
these models as compressors further, it will be neces-
sary to investigate both parallelized versions of these
algorithms and a more elegant relaxation of the ex-
haustive nature of their components. Subgraph sam-
pling methods like the ones detailed by Kashtan et al.,
2004, may be able to provide a significant increase in
performance.

The notion of compression-based learning is a good
framework within which to combine many approaches
to inference from the most general to the most domain
specific. The Minimum Description Length principle
and its associated techniques, which have not been in-
vestigated yet for reasons of scope, offer the promise
of an even broader field of approaches to the analysis
of graph data.
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Appendix: Graph coding

The method of coding data is always a sensitive point
in compression-based learning. The precise choices
made in translating the data to a string of bits can
greatly affect which patterns are picked up, or ignored
by the subsequent inference procedure. Here we de-
tail the procedure used to encode the graphs in both
COMPressors.
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GZIP

We take half of the adjacency matrix ((n?+mn)/2 bits),
and store it in flattened form as an array of java byte
primitives, together with the size of the string (since
the stored representation is padded to a multiple of
eight). We then serialize this representation into a
java GZIPOutputStream. To make our implementa-
tion generic, we assume that the nodes and links are
labeled, and serialize the labels in a fixed order after
the adjacency matrix. In the graphs mentioned in this
paper, there is a single label assigned to all elements,
so inference shouldn’t be affected by the labels.

Subdue

In the subdue case we do our coding in a more precise
way, without relying on platform-specific functions.
More importantly, we only count the bits required to
store our graph, rather than actually constructing the
representation itself.

PLAIN GRAPH

To store a plain graph, we follow roughly the coding
strategy outlined in Holder et al., 1994.

We first store the number of nodes n in prefix free
coding, and the maximum number of neighbours for a
node in the graph nmax (in logn bits). We then store
the lower half of the adjacency matrix (including the
diagonal) row by row.

For node i, we only need to store the connections to the
i nodes below it including itself. We use log nmax bits
to store the number of such neighbours n;, and log (., )
bits to store the configuration of those neighbours.

After this, all that remains is to encode the labels of
the nodes and links. We assume that the sender and
receiver in our coding scheme possess a codebook that
is efficient for the data given, so that if a label 1 occurs

with frequency #l, we can encode it in —log %
bits.

We assume that there is some canonical ordering
among the nodes and links, and store them as a
stream. Since the number of labels is known from
the adjacency matrix, the code for the entire graph
is self-delimiting.

GRAPH WITH SUBSTRUCTURE

To store the graph with a substructure, we first store
the substructure itself. Since this contains no spe-
cial symbols, we can store it simply using the above
method (except we use the codebook based on the
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whole graph rather than the substructure to encode
the labels). This is a prefix code, so we can start en-
coding the rest of the graph right after.

In the rest of the graph, we remove the nodes matched
to the substructure and all links connecting to them.
We store the ‘silhouette’ of the substructure as a plain
graph (again with the codebooks of the whole graph).

We then store the way the substructures should be
connected into the silhouette to reconstruct the orig-
inal graph. For each substructure we first store the
transformation cost (if the substructure was an inex-
act match), with a prefix penalty to make the descrip-
tion self-delimiting, we then store the number of links
connecting the substructure un prefix-coded form, and
then for each link we take logs bits to encode how to
connect it in the substructure and log d to connect it
in the rest of the graph, where s is the number of nodes
in the substructure and d is the number of nodes in
the silhouette.

In later versions of our code, the occurrences of the
subgraph are replaced by symbol nodes, but the ver-
sion used to perform these experiments uses the sil-
houette method.
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Abstract

Neural decoding is concerned with inferring
certain aspects of a stimulus from brain ac-
tivity. With the recent advent of functional
magnetic resonance imaging (fMRI), it has
become possible to create a literal picture
of a visual stimulus from the human brain.
Most conventional decoders are based either
on the input space or on a hand-designed fea-
ture space. An alternative to hand-designing
a feature space is unsupervised feature learn-
ing, which has seen much success in com-
puter vision. Here, we present a new de-
coder, which combines Bayesian inversion of
voxel-based encoding models with unsuper-
vised feature learning (independent compo-
nent analysis). We validated our decoder by
reconstructing images of handwritten digits
from human brain activity measured using
fMRI, with state-of-the-art accuracy. Our re-
sults show that the feature space has a sub-
stantial effect on the accuracy of the recon-
structions, and independent component anal-
ysis provides an effective means to learn fea-
ture spaces for neural decoding in fMRI.

1. Introduction

Neural decoding is concerned with inferring certain as-
pects of a stimulus from stimulus-evoked brain activ-
ity. Functional magnetic resonance imaging (fMRI)
measures the activity of many separate voxels (i.e. vol-
umetric pixels) in the brain by detecting the associated
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changes in the blood-oxygen-level-dependent (BOLD)
haemodynamic responses. The spatial resolution af-
forded by fMRI has made it possible to take advan-
tage of the information contained in distributed pat-
terns of activity evoked by a stimulus in order to clas-
sify (Haxby et al., 2001; Kamitani & Tong, 2005; van
Gerven et al., 2010a), identify (Mitchell et al., 2008;
Kay et al., 2008) or reconstruct (Thirion et al., 2006;
Miyawaki et al., 2008; Naselaris et al., 2009; Nishimoto
et al., 2011; van Gerven et al., 2010b; van Gerven &
Heskes, 2012) the original stimulus.

In the context of neural decoding, reconstruction refers
to creating a literal picture of a stimulus from the
brain. That is, given an encoding relationship that
characterizes how a stimulus or some stimulus features
are represented by brain activity, reconstruction is the
process of determining the inverse of the encoding re-
lationship (i.e. the decoding relationship) in order to
reproduce the stimulus.

Inverting a neural response function is non-trivial be-
cause of the stochastic dynamics of neural processes
(Brown et al., 2004). Therefore, the encoding rela-
tionship is described by a stochastic model (Dayan &
Abbott, 2001). Furthermore, prior information about
the stimulus is often incorporated in the process of re-
construction, which can also be described by a stochas-
tic model, in order to capture the statistical properties
of the environment (Dayan & Abbott, 2001).

Bayesian decoding combines the encoding relationship
(i.e. the likelihood) and the prior information (i.e. the
prior) using Bayes’ theorem in order to describe the
decoding relationship (i.e. the posterior). The conven-
tional approach to Bayesian decoding is to character-
ize how certain “hand-designed” features of a stimulus
(e.g. Gabor features) are represented by brain activity.



Unsupervised Learning of Features for Bayesian Decoding in fMRI

Analysis Encoding -

>
| . [o] ., [O]s
: @ ——1 @ 1 O |2
i ® O O |3
2| @« O s O |£

@ @ O

Synthesis Decoding

Figure 1. Our framework for reconstructing images from stimulus-evoked BOLD haemodynamic responses. The matrix
of linear feature detectors (W) is the parameter of the statistical generative model. W is learned from unlabeled images.
The matrix of linear features (A) is the inverse of W. The matrix of regression coefficients (B) is the parameter of the
voxel-based encoding models. B is learned from stimulus-response pairs such that the images are analyzed in order to
find their latent independent components. The latent independent components are represented by the gray circles in the
figure. Reconstruction of a stimulus from stimulus-evoked BOLD haemodynamic responses is the process of maximum a
posteriori (MAP) estimation to obtain point estimates of the latent independent components of the stimulus followed by

image synthesis to reproduce the stimulus.

However, hand-designing features for complex stimuli
and adapting hand-designed features of a particular set
of stimuli with certain characteristics to another set of
stimuli with different characteristics can be difficult.
Unsupervised feature learning is an alternative to the
conventional approach, which can mitigate the limi-
tations of hand-designing features and has seen much
success in computer vision (Bengio et al., 2012).

Furthermore, while it has been shown that prior in-
formation has a substantial effect on reconstruction
accuracy (Naselaris et al., 2009), determining a suit-
able prior that can be used in Bayesian inference has
been a challenging goal such that generic priors and
empirical priors have often been used (Thirion et al.,
2006; Naselaris et al., 2009; Nishimoto et al., 2011;
van Gerven & Heskes, 2012). Another advantage of
unsupervised feature learning is that a statistical gen-
erative model can be used as a prior in Bayesian in-
ference (Hyvérinen et al., 2009). Unsupervised feature
learning has already been used in the context of neu-
ral decoding. For example, van Gerven et al., (2010Db)
reconstructed handwritten digits using deep belief net-
works.

Here, we introduce a new, more straightforward ap-
proach to unsupervised feature learning for neural de-
coding that mitigates the limitations of hand-designing
features and gives a proper prior that can be used
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in Bayesian inference. Our framework combines un-
supervised feature learning with Bayesian decoding
for reconstructing images from stimulus-evoked BOLD
haemodynamic responses (Figure 1).

In particular, we use independent component anal-
ysis (ICA) to define a statistical generative model
that describes how images are generated as linear
transformations of their latent independent compo-
nents (Hyvérinen, 2010) and linear regression to de-
fine voxel-based encoding models that characterize
how latent independent components of images are rep-
resented by BOLD haemodynamic responses. That
is, combining the analysis-synthesis loop and the
encoding-decoding loop, reconstruction is defined as
the process of Bayesian inference from the voxel-based
encoding models followed by image synthesis from the
statistical generative model.

In order to learn useful linear features from unlabeled
data, to be used in linear regression, we have to im-
pose constraints on the statistical generative model.
Two approaches that are typically used is to impose a
bottleneck to learn an under-complete representation
(van Gerven & Heskes, 2010) and constrain the repre-
sentation to be sparse (Olshausen & Field, 1996). The
statistical generative model defined using ICA discov-
ers interesting structure in the data by learning under-
complete non-Gaussian (i.e. sparse) representations.
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Figure 2. Left panel shows the distributions of 64 latent independent components estimated from grayscale images of
handwritten digits. The x-axes represent s; and the y-axes represent p(s;). The right panel shows the distribution of one
the component in more detail. Note that the distributions are indeed peaked at zero and have high kurtosis.

In the following sections, we first present the deriva-
tion of our framework. We then validate our frame-
work by reconstructing grayscale images of handwrit-
ten digits from stimulus-evoked BOLD haemodynamic
responses. We finally show the effect of unsupervised
feature learning on the reconstruction accuracy.

2. Methods

Let x € R? and y € R? be a stimulus-response pair
where x is a vector of pixel gray-scale values in an
image, and y is a vector of multiple voxel activities
evoked by x. Furthermore, let ¢ : R? — R™ be an
invertible linear transformation between the stimulus
space and a feature space.

Without loss of generality, we assume that both ¢(x)
and y are normalized to have zero mean and unit vari-
ance.

We are interested in the problem of reconstructing x
from y:

=0 (memax G O@MY) )
where X is a reconstruction of x, and p(¢(x)|y) is a
decoding distribution. We can equivalently formulate
the problem of reconstructing x from y using Bayes’
theorem:

k=07 (aremax (V10 )P0 ) ()

where p(y|¢(x)) is an encoding distribution, and
p(¢(x)) is a prior. Therefore, in order to solve the
problem of reconstructing x from y, we need to define

¢, p(¢(x)) and p(y|p(x)).
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2.1. Unsupervised Feature Learning

We start by defining a statistical generative model of
images. Assuming that an image is generated by a
linear superposition of some features, we use ICA to
define the statistical generative model of images by a
linear transformation of the latent independent com-
ponents of the image:

z=As (3)

where z € RP is a vector of pixel gray-scale values in
an image, A € RP*™ is a matrix of linear features,
and s € R™ is a vector of the latent independent com-
ponents of z such that m < p. In order to compute s;
as a linear function of z, we invert the linear system

defined by A:
(4)

where W € R™*? is a matrix of linear feature detec-
tors such that W = A~!. Furthermore, we make the
simplifying assumption that s; have unit variance in
order to make s; unique, up to a multiplicative sign.

Si:WZ

We then define p(s;), assuming that the s; are non-
Gaussian and sparseness is the most dominant type of
non-Gaussianity in the images that we are considering
(Fig. 2), we use a distribution that is peaked at zero
and has high kurtosis to define p(s;). In particular, we
use the logistic distribution:

p(s;) = logistic (0, \/§>
7T

We then factorize p(s) as the prior on individual s;:

(5)

m

Hp(sz‘)

i=1

(6)

p(s)
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We can now represent the invertible linear transforma-
tion from the input space to the feature space by W
(i.e. ¢(x) = s = Wx) and use p(s) as the prior in
Bayesian inference (i.e. p(é(x)) = p(s)).

2.2. Encoding and Decoding

We continue by defining voxel-based encoding models.
We use multiple linear regression to define the voxel-
based encoding models by a weighted sum of the linear
feature detector outputs for responses 1 < i < ¢:

yz:ﬁ;rs'i‘gi (7

~—

where 3, € R™ are vectors of regression coefficients
and g; € R are Gaussian noise such that e; ~ N'(0,02).
We then use the multivariate Gaussian distribution to
define the encoding distribution:

P(ylo (x)) =N (B's,3) (8)
where B = (B4,..,8,) € R™7 and X
diag(of,...,02) € RI%7.

Combining the prior and the encoding distribution us-
ing Bayes’ theorem results in the decoding distribu-

tion:

p(sly) o< p(yls)p(s) (9)
Having defined the invertible linear transformation
from the input space to the feature space and the de-
coding distribution, we can finally solve the problem
of reconstructing x from y using maximum a poste-
riori (MAP) estimation to obtain a point estimate of
s (i.e. Smap = arg max{p(y|s) (s)}) and synthesizing

from the statlstlcal generative model of images (i.e.
ASyiap)-

X
X =

2.3. Experimental Validation

For unsupervised feature learning, we used the entire
MNIST database of handwritten digits, without the
labels (LeCun et al., 1998). That is, the training set
consisted of 70000 unlabeled grayscale images of 28
x 28 pixels in 10 categories (i.e. handwritten zeros
through handwritten nines). We preprocessed the im-
ages by centering, PCA whitening and dimensionality
reduction such that we retained the least possible num-
ber of principal components that account for 90% of
the variability in the images (i.e. the first 64 principal
components). We estimated the parameters of the sta-
tistical generative model (Fig. 3) using the FastICA
algorithm (Hyvérinen, 1999).

For encoding and decoding, we used the dataset orig-
inally published in van Gerven et al. (2010a) and van
Gerven et al. (2010b). Briefly, it consisted of es-
timated peak fMRI responses to grayscale images of
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Figure 3. 64 linear feature detectors learned from the
MNIST database using the FastICA algorithm.

vﬁszeﬂal

Figure 4. 64 images synthesized from the statistical gen-
erative model by sampling linear feature detector outputs
from the estimated distributions of the latent independent
components.

handwritten sixes and handwritten nines. The train-
ing set consisted of 80 stimulus-response pairs, and
the test set consisted of the remaining 20 stimulus-
response pairs. Both the training set and the test set
had equal number of stimuli from each of the two cate-
gories (i.e. handwritten sixes and handwritten nines).
We preprocessed the images as in unsupervised feature
learning. We trained the voxel-based encoding models
using kernel ridge regression and performed hyperpa-
rameter optimization using grid search with a nested
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Figure 5. Stimuli, ICA reconstructions and PCA reconstructions.

leave-one-out cross validation on the training set. We
computed the MAP estimate of the linear feature de-
tector outputs using the minFunc implementation of
the limited-memory BFGS algorithm (Schmidt, 2005).
For comparative purposes, we used another framework
based on preprocessed images (i.e. PCA features),

with ¢(x) = x and p(¢(x)) = N(0,L,).

3. Results

We first examined the linear feature detectors (Fig. 3)
and synthesized 64 images from the statistical genera-
tive model (Fig. 4) by sampling linear feature detector
outputs from the estimated distributions of the latent
independent components (Figure 2). Visual inspection
shows that the linear feature detectors are tuned for
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Figure 6. Reconstruction accuracy quantified by comput-
ing the structural similarity index.
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meaningful features that resemble pen-strokes, which
is consistent with the results in the literature (Ranzato
et al., 2006; Lee et al., 2007). That is, the statistical
generative model describes images as a linear transfor-
mation of pen-strokes. Furthermore, the synthesized
images resemble handwritten digits, which suggests
that the statistical generative model captures image
statistics of handwritten digits.

We then quantified the encoding performance by com-
puting explained variance per voxel. The difference
between the mean explained variance of the two frame-
works was not significant (p > 0.05), with both of the
two frameworks having a state-of-the art encoding per-
formance.

We finally evaluated the reconstruction accuracy. Vi-
sual inspection shows that our framework has more
accurate reconstructions (Fig. 5). We quantified the
reconstruction accuracy by computing the structural
similarity index (Wang et al., 2004) per reconstruction
(Fig. 6). The difference between the mean structural
similarity indices of the two frameworks was signifi-
cant (p < 0.05), with our framework having a higher
structural similarity index for each of the 20 recon-
structions.

4. Conclusion

Here, we introduced a new framework that combines
unsupervised feature learning and Bayesian decod-
ing. We validated our framework by accurately re-
constructing grayscale images of handwritten sixes
and handwritten nines from stimulus-evoked BOLD
haemodynamic responses.

The significant improvement in the reconstruction ac-
curacy, but not the encoding performance, demon-
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strated the importance of prior information in
Bayesian decoding. Using the statistical generative
model defined using ICA as a prior in Bayesian de-
coding results in significantly better reconstructions
since ICA captures the image statistics of grayscale
handwritten digits better than PCA.

Our framework can be extended beyond grayscale im-
ages of handwritten characters, both within the vi-
sual modality (e.g. any combination of larger images,
natural images, color images, stereo images, tempo-
ral sequences of images) and across modalities (e.g.
the auditory modality). Furthermore, our statistical
generative model can be extended into multiple lay-
ers to learn hierarchical features of the stimuli. It re-
mains an open question whether we can accurately re-
construct such complex stimuli from stimulus-evoked
BOLD haemodynamic responses.

In conclusion, our results show that the features have
a significant effect on the reconstruction accuracy. We
also demonstrated that independent component anal-
ysis captures the image statistics of grayscale hand-
written digits and provides an effective means for un-
supervised learning of features for Bayesian decoding
in fMRI that can mitigate the limitations of hand-
designing features.
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Abstract

With the undertake of various folktale digi-
talization initiatives, the need for computa-
tional aids to explore these collections is in-
creasing. In this paper we compare Labeled
LDA (L-LDA) to a simple retrieval model on
the task of identifying motifs in folktales. We
show that both methods are well able to suc-
cessfully discriminate between relevant and
irrelevant motifs. L-LDA represents motifs
as distributions over words. In a second ex-
periment we compare the quality of these
distributions to those of a simple baseline
that ranks words using a TF-IDF weighting
scheme. We show that both models produce
representations that match relatively well to
a manually constructed motif classification
system used in folktale research. Finally we
show that unlike L-LDA, this simple baseline
is capable of representing abstract motifs as
generalizations over more specific motifs.

1. Introduction

Without the wondering question “What makes your
ears so big?”, the story of Little Red Riding Hood does
not feel complete. Likewise, every telling of Cinderella
should contain a part about the glass slipper and a
cruel stepmother who makes the heroine’s life miser-
able. In folktale research such more or less obligatory
passages are called motifs. They “have a power to per-
sist in tradition” (Thompson, 1946) and are part of
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our collective cultural heritage. Motifs play a key role
in the classification of folktales into folktale types. For
instance, in the authoritative folktale type catalog The
Types of International Folktales by Aarne, Thompson
and Uther (henceforth: ATU catalog) (Uther, 2004)
every tale type is accompanied by a sequence of mo-
tifs which are the primary descriptive units of that tale

type.

The goal of our work is to automatically identify motifs
in folktales. This can be cast as a multi-label classifica-
tion task in which we attempt to assign a set of motifs
to unseen, unlabeled folktales. The set of potential
labels that can be assigned to a folktale is large, but
certain motifs will be more strongly tied to the partic-
ular folktale. We therefore conceptualize our task as a
ranking problem.

As discussed in more detail by Karsdorp et al. (2012)
and illustrated by Figure 1, the motifs in the Dutch
Folktale Database follow a power-law like distribution.
Recent research makes a strong case for the use of
statistical topic models for multi-label datasets with
long-tail label distributions as opposed to discrimi-
native methods (Rubin et al., 2012). In this paper
we compare the performance of the supervised topic
model Labeled LDA (L-LDA) (Ramage et al., 2009)
to a ‘simple’ retrieval model that uses Okapi BM25 as
its ranking function. The first question we would like
to answer is: How well do both systems perform on a
ranking task where the goal is to allocate the highest
ranks to the most relevant motifs?

Topic models such as LDA represent topics as dis-
tributions over words. Many studies are devoted to
methods that aim to measure the quality and inter-
pretability of these topics, which may not be trivial
given the unsupervised nature of LDA. However, we
are in a position in which we can use predefined la-
bels, as the motifs used in this study are part of a
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Figure 1. Frequency distribution of motifs on a log scale in
Dutch and Frisian folktales in the Dutch Folktale Database.

(hierarchical) classification system, and we have infor-
mation on which motifs occur in which folktale type.
This information is available throughout our data, pro-
viding us with ground truth labels. We compare the
motif representations discovered by L-LDA to those
obtained using a simple baseline in which we compute
what words are most strongly associated with each mo-
tif using a TF-IDF weighting scheme. We then verify
by a quantitative evaluation (using several evaluation
metrics from information retrieval) how well the motif
representations discovered by both systems compare
to a manually constructed motif classification system
used in folktale research.

The automatic extraction of motifs is relevant for a
number of reasons. Various new folktale digitization
initiatives have been undertaken (Meder, 2010; Abello
et al., 2012; La Barre & Tilley, 2012), which ask for
ways to browse the collections at different facets, such
as motifs. This would allow researchers to investigate,
for example, how folktales have changed through time
in terms of their motif material. It is only since the
appearance of Brothers Grimm’s version of Little Red
Riding Hood, for example, that the girl and her grand-
mother are rescued from the wolf’s belly. Extracting
motifs from texts also allows researchers to find new re-
lationships between folktales which could tell us more
about their evolution.

The outline of the paper is as follows. We will start
with providing an overview of related work in Sec-
tion 2. We then continue with a description of the
resources used in this study in Section 3. Sections 4
and 5 are devoted to the experimental setup followed
by our results. The last section offers our conclusions
and directions for future work.
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2. Related work

Voigt et al. (1999) have shown that it is possible to
automate motif identification in folklore text corpora
by automatically grouping texts based on their content
similarities. In their study, the presence of common
motifs was derived from co-occurrences of keywords
in the texts. For folklore researchers, however, the
results are not easily interpretable because motifs are
represented as principal components to which no label
is assigned.

The literature on multi-label classification is very
extensive and has been summarized elsewhere (e.g
Tsoumakas & Katakis (2007)). Of special interest for
our purposes is the recent work by Nguyen et al. (2013)
who showed that Okapi BM25 acts as a competitive
baseline in a folktale type classification experiment.

Our work is an application of the multi-label adap-
tation of Latent Dirichlet Allocation — Labeled LDA
— as proposed by Ramage et al. (2009). Rubin et
al. (2012) provide an extensive comparison of discrim-
inative multi-label classifiers and three multi-labeled
extensions of LDA. They make a strong case for the
use of statistical topic models in the context of highly
skewed datasets.

Our work differs from both aforementioned papers in
three aspects. First, we apply the model to literary
texts. It has been observed in many applications that
literary texts behave differently from other genres in
various ways which requires adaptations of the pro-
posed models. Second, our multi-labeled dataset pro-
vides us with the unique possibility to evaluate the
topic distributions against ground truth labels. Fi-
nally, we will propose a simple way to incorporate the
hierarchical structure of our label set into the model.

3. Resources
3.1. TMI and ATU

The comprehensive Motif-Index (Thompson, 1955
1958) contains over 45,000 motifs. The motifs are
hierarchically ordered in a tree structure. There are
23 alphabetic top-level categories ranging from mytho-
logical motifs to motifs concerning traits of character.
Many motifs are bound to particular folktale types.
Under (1) we list some examples:

(1)Q426 Wolf cut open and filled with stones as
punishment;

F911.3 Animal swallows man (not fatally);
F823.2 Glass shoes.
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The motifs from the TMI play a key role in the classi-
fication of tales into a certain type in the ATU catalog.
Every folktale type contains a short summary of the
plot. In this summary we find a sequence of motifs
that together uniquely identify a folktale. An example
of a story summary in the ATU catalog, of the folktale
type The Shepherd Boy, is as follows.

ATU 0515, “The Shepherd Boy. A
foundling child who herds animals finds three
objects (of glass) which he gives back to their
owners. They promise to reward him [Q42].
With the help of the last owner, a giant, the
boy fulfills three tasks. He acquires a castle
in which a princess is confined. He rescues
her and marries her [L161].”

This tale type contains two motifs, Q42 ‘Generosity
rewarded’ and L161 ‘Lowly hero marries princess’.

3.2. Dutch Folktale Database

The Dutch Folktale Database! is a collection of about
42,000 folktales (Meder, 2010). The collection contains
folktales from various genres (e.g. fairytales, legends,
urban legends, jokes) in a number of variants of Dutch
and in Frisian. Every entry in the database contains
metadata about the story, including language, collec-
tor, place and date of narration, keywords, names, and
subgenre. The two largest components contain tales
written in standard Dutch and Frisian. In this paper
we restrict our experiments to these two components.

Folktales in the Dutch Folktale Database have been
manually classified according to the folktale types in
the ATU catalog, as far as a link could be established.
This link between particular instances of tales and
folktale types provides us with the set of motifs that
can occur in a folktale type, and therefore in its in-
stantiations. For each folktale in the Dutch Folktale
Database that was classified according to the system
in the ATU catalog, we assigned to it the set of motifs
of its corresponding folktale type.

3.3. Datasets

We created two datasets: one for Dutch folktales and
one for the Frisian tales. We only included tales that
were classified according to the classification system of
the ATU catalog. This resulted in 1,098 Dutch tales
and 1,373 Frisian tales. Excluding punctuation, the
average number of words per story is 468 for Dutch
and 194 for Frisian.

"http://www.verhalenbank.nl
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Both collections were tokenized using the Unicode to-
kenizer Ucto (Van Gompel et al., 2012).2 We re-
moved all diacritics and excluded words shorter than
two characters and all numbers. As there are no off-
the-shelf stemmers available for Frisian, we choose to
not do any further preprocessing on the Dutch texts
either and use the full tokens.

4. Models

4.1. Baselines

As a baseline for the Dutch and Frisian experiments
we use a Big Document Model (see e.g. Nguyen et
al. (2013)). For each motif observed in the collection
we merge all documents in which that motif occurs
into one big document. The ID number of the mo-
tif forms the class label of the new document. Given
these big documents, we then compute the TF-IDF
for all words. We use L2 to normalize the term vec-
tors and smooth the IDF weights by adding one to the
document frequencies. This provides us with a ranked
list of how strongly a word is associated with a big
document, i.e. a motif. We use these ranked lists as
a baseline in the cluster evaluation in section 5.2. We
will refer to this model as the Big Document Model
(BDM).

As a baseline for the ranking experiment in section 5.1
we use a standard retrieval model with Okapi BM25
as our ranking function. BM25 has proven itself to be
one of the most successful ranking functions in text-
retrieval (Robertson & Zaragoza, 2009). We compute
it as follows:

S(D,Q) = 3, IDF(g;) -

f(qi,D)-(k1+1)
f(qi,D)+k1-(1—b+b-

(2)

[D] )

avgdl

where @ represents a query and f(g;, D) is the fre-
quency of the i’th term in ¢ in document D. Avgdl is
the average document length. The parameters b and
k1 are set to 0.75 and 1.2, respectively. We compute
the IDF weight using:

N —n(¢;)+0.5

where N is the number of documents in the corpus
and n(g;) the number of documents that contain g;.
This formulation of IDF can result in negative scores
when terms appear in more than fifty percent of the
documents. We therefore give the summand in (2) a
floor of zero, to filter common terms.

IDF(q) = log (3)

Queries are represented by the complete contents of a
test folktale. We issue these queries on the constructed

*http://ilk.uvt.nl/ucto/
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big documents, resulting in a ranking of motifs for that
particular folktale.

4.2. Labeled LDA

Latent Dirichlet Allocation (LDA) (Blei et al., 2003)
is a popular method for extracting topics from texts.
LDA is a generative probabilistic model that models
documents as distributions over topics. Topics are rep-
resented by distributions over words. The model as-
sumes that each word in a document is generated from
a single topic.

Ramage et al. (2009) extend the basic framework of
LDA by introducing a supervised variant in which the
latent topics in LDA correspond directly to the labels
assigned to a particular document. Given a corpus
of multi-labeled documents the model can estimate
the most likely words per label as well as the distri-
bution of labels per document. The primary goal of
Ramage et al. (2009) is to show what qualitative ad-
vantages L-LDA has over ‘traditional’ discriminative
multi-labeled classifiers such as SVMs. Their results
suggest that L-LDA might be advantageous in the con-
text of highly skewed multi-labeled datasets, such as
our corpus of folktales (see Rubin et al. (2012) for a
more extensive comparison between multi-labeled su-
pervised versions of LDA and SVM classifiers).

In the generative model of L-LDA labels are assumed
to be generated from a binomial distribution. As Ru-
bin et al. (2012) point out, in practice L-LDA just
assumes the labels to be observed without a prior gen-
erative process. For educative purposes they propose a
new model — Flat LDA — that does away with this as-
sumption. Our implementation of the model is based
on Flat LDA. However, we will still call the model
Labeled LDA.

Unlike in unsupervised LDA, we are confident about
the labels assigned to a document. To reflect this
knowledge, and in order to reduce the variance of the
topic distributions, we assign to the labels a relatively
high prior (o = 50). Because of the relatively small
vocabulary size of our corpus, we use a relatively low
term smoothing prior (8 = 0.001) to assign the proba-
bility mass to only a few words per topic. Both o and
(8 are symmetric priors.

5. Experimental results
5.1. Ranking experiment

In this section we will investigate to what extent we
can use L-LDA as a multi-label classifier for the ex-
traction of motifs. We cast the assignment of a set of
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Table 1. Evaluation of motif retrieval for BM25 and L-LDA
on Dutch and Frisian folktales.

Model AP One Error Is Error Margin

Dutch BM25 0.78 0.26 0.27  10.69
T LLDA 0.72 0.30 039 26.48
Frisian BM25 0.88 0.15 0.15 4.46
L-LDA 0.88 0.16 0.16 7.0

labels to a document as a ranking task in which the
goal is to allocate the highest ranks to the most rel-
evant motifs. We rank the motifs according to their
posterior probability in a document. We compare the
performance of L-LDA to the retrieval model as de-
scribed in section 4.1.

We performed 10-fold cross-validation on both
datasets, dividing the folktales at random into 10 parts
of approximately equal size. As shown by Karsdorp et
al. (2012), there are quite many pairs of motifs that
co-occur exclusively, that is, they never appear with-
out the other. For these motifs, both models have
no way of knowing which words are relevant to which
motif as — in information theoretic terms — their mu-
tual information is maximal. We therefore choose to
exclude all these informationally indistinguishable mo-
tifs from our experiments. Although this results in a
rather drastic filtering of motif types, the final num-
ber of motif types is still sufficiently high (Frisian: 155,
Dutch: 179) and still about eight times higher than in
the experiments by Ramage et al. (2009).

In the ideal case, the top of the ranked list contains
the motifs of a folktale. The extent to which this is
the case reflects how well relevant motifs are found by
the systems. We evaluate the ranked lists by means of
four evaluation metrics (for reasons of comparability
we follow Rubin et al. (2012) in our choice for these
evaluation metrics):

Average Precision — Are most or all of the target
motifs high up in the ranking?

One Error — For what fraction of documents is the
highest-ranked motif incorrect?

Is Error — What fraction of rankings is not perfect?

Margin — What is the absolute difference between
the highest ranked irrelevant motif and the lowest
ranked relevant motif, averaged across folktales?

The results presented in Table 1 show quite similar
results for both L-LDA and BM25. Surprisingly, the
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relatively standard retrieval model performs best on all
evaluation metrics and on both datasets. In the case
of the Frisian folktales the retrieval system is able to
emphasize the highest ranks with high precision and a
low irrelevance margin. L-LDA produces similar scores
but has a slightly higher margin score. Both systems
perform better on the Frisian tales than on the Dutch
tales. Part of the explanation for this lies in the ratio
between motifs and tales in the Dutch collection: there
are relatively few folktales with many possible motifs,
while the Frisian data has a higher average number of
motifs per tale. BM25 shows less sensitivity to this
ratio than L-LDA and outperforms L-LDA clearly. In
the next section we perform a qualitative analysis to
explore why this is the case when we evaluate the motif
representations discovered by both models.

5.2. Motif visualization and evaluation

We compare the word distributions discovered by L-
LDA to those found by the Big Document Model in
which we compute the TF-IDF score for all words in
each document. Table 2 shows the top words asso-
ciated with four motifs for L-LDA and the BDM ex-
tracted from Dutch texts (the words are given in their
English translation). Many words are discovered by
both systems; especially the first few words are found
by both methods. However, in some cases L-LDA
misses some words characteristic of the given motif.
Take motif N211.1.3, ‘Lost ring found in fish.” L-LDA
ranks the words fish and ring considerably lower than
the BDM.3

Standard evaluation of topic identification by LDA is
done on the basis of either extrinsic methods (such as
retrieval tasks) or intrinsic methods, where the goal
is to estimate the probability of test documents or
to compute the coherence of topics (see Mimno et
al. (2011) and the references cited therein). A rather
unique property of the labels under investigation in
this study is that they are part of a hierarchical tree
structure. A motif such as ‘Transformation: pumpkin
to carriage’ (D451.3.3) belongs to the more abstract
category of ‘Transformation: object to object’ (D450
D499) which in turn is a child motif of the broader par-
ent motif ‘Transformation’ (D0-D699), which in turn
is placed under the top-level node ‘Magic’ (D), one out
of the 23 top nodes.

We perform a hierarchical cluster analysis on the ba-
sis of the motifs discovered by L-LDA and evaluate

3Tt is not necessarily a ‘ring’ that is found in the fish.
There are many variations on this folktale type and often
‘teeth’ or a ‘denture’ is found in the fish’ belly, which is
why BDM ranks these words so high.
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Table 3. Clustering results of Dutch and Frisian motif rep-
resentations.

Model homogeneity completeness V-measure

Dutch BDM 0.365 0.330 0.347
L-LDA 0.344 0.281 0.310
Frisian BDM 0.354 0.299 0.324
L-LDA 0.358 0.270 0.308

the clusters against the top 23 categories in the hi-
erarchical tree structure of Thompson’s Motif Indez.
We choose Ward’s method as our linkage method and
compute the similarity between motifs using the cosine
similarity metric.

We evaluate the cluster solution on the basis of three
measures (Rosenberg & Hirschberg, 2009):

Homogeneity — Does the cluster solution result in
clusters that only contain members of the same
class?

Completeness — Does the cluster solution result in
clusters to which all members of the same class
have been assigned?

V-measure — An entropy-based measure that ex-
presses the harmonic mean of homogeneity and
completeness.

The results in Table 3 show that the quality of the clus-
ter solutions of the two models is quite similar. The
solution obtained from the BDM corresponds slightly
better to the top-level categorization in the Motif In-
dex than the one from L-LDA.

5.3. Exploiting the hierarchical structure of
the Motif Index

In the model described above the set of possible mo-
tifs was restricted to those motifs that are present in
the training data. In the following we describe an ex-
tension of the model in which we exploit the relations
between motifs in the hierarchical tree of Thompson’s
Motif Index, which lists many motifs not present in the
ATU catalog. Yet, because of the hierarchical nature
of the index, many ancestral motifs are implicitly ob-
served. The question we would like to explore is: What
can we learn about the representation of these more
abstract motifs by exploiting the hierarchical structure
of the index?
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Table 2. The top words within four motifs learned by L-LDA and BDM.

TD-IDF

L-LDA

Q426: Wolf cut open and filled with stones as punishment.

wolf, Little Red Riding Hood, grandmother, her, children, little
kids, your, Oud-Bovetje, big, granny, belly, goat, mother, angry

wolf, children, mother, door, said, open, her,
little kids, so, entire, still, belly, surely,
Oud-Bovetje, went

N211.1: Lost ring found in fish.

Stavoren, teeth, cod, her, denture, ring, sea, wheat, ships, fish,

shipper, harbor, she, the Heerhugowaard

the, her, and, she, the, of, in, was, a, lady,
Stavoren, she, ring, sea, denture

K343.2.1: The stingy parson and the slaughtered pig.

clerk, pastor, pig, stolen, will, slaughter, farmers, tonight,
everyone, belief, sexton’s house, fattened, excellent, slaughter

time, pig meat, insignificant

clerk, pastor, pig, will, said, asked, everyone,
stolen, mine, yes, so, must, against

J2321.1: Parson made to believe that he will bear a calf.

student, pastor, little bottle, cork, uroscopy, monkey, John,
clerk, pregnant, rubber band, quack, butt, give birth, your, spins

the (de), a, pastor, John, student, the (het),
to be, must, water, says, comes, to (te), to
(om), and, surely

Table 4. Clustering results of Dutch and Frisian motif rep-
resentations (including ancestor motifs).

Model homogeneity completeness V-measure

Dutch BDM 0.339 0.315 0.327
L-LDA 0.159 0.177 0.168
Frisian BDM 0.414 0.377 0.394
L-LDA 0.197 0.199 0.198

Figure 2 shows the tale type ATU 333 Little Red Riding
Hood as a layered sequence of motifs. The gray nodes
are observed in the ATU catalog under index ATU 333.
The observed motifs inherit certain information from
its ancestors. Although we have no direct information
about the unshaded motifs in the graph, it should be
possible to infer some information about their features.
The motifs F911.3 and F913, for example, share the
concept of “extraordinary swallowing” and have some
idiosyncratic aspects themselves. If we assume that a
motif such as F911.3 is a mixture of features from its
parents and of its own, we might be able to learn about
the features of the unobserved more abstract motifs.

Each folktale is labeled with the motifs that are listed
by its corresponding tale type in the ATU catalog. We
expand this motif set by incorporating all ancestral
motifs in Thompson’s Motif Index. We only take into
account non-terminal nodes with at least two children.
The top-level categories in the index miss an overar-
ching root node, which we add to the tree. Similar
as before, we exclude all motifs from the experiment
that exhibit maximal mutual information towards each
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other. This results in 410 possible motifs in the Dutch
dataset and 293 motifs in the Frisian dataset.

Table 4 shows the evaluation of the cluster solutions.
Interestingly, whereas in the previous evaluation L-
LDA and BDM gave similar results, here L-LDA seems
to suffer considerably from the addition of ancestral
nodes to the observed motifs. The cluster solution ob-
tained from BDM outperforms L-LDA by a substantial
margin on all evaluation measures. To obtain a bet-
ter intuition about why BDM performs better than
L-LDA in matching its motif distributions to the hier-
archy in Thompson’s Motif Index, we show part of the
hierarchical tree in Figure 3. We display for each mo-
tif the top words discovered by the two models. The
words discovered by BDM are listed in the left column.
The right column displays those of L-LDA.

Various interesting observations can be made on the
motif representations in the tree. First, intuitively
both L-LDA and BDM are able to discover good qual-
ity motifs at the leaves of the tree. Take motif J1780
‘Things thought to be devils, ghosts etc.” where L-
LDA is able to find some either directly or indirectly
related words such as child molester, butchery and
world war. BDM provides a good motif representa-
tion for J1150: ‘Cleverness connected with the giving
of evidence’ with words such as fish pot, fox trap and
money. All three items function as important pieces
of evidence in the court of law in variants of ATU 1381
‘The Talkative Wife and the Discovered Treasure’.

Inspecting the tree provides us with two hypotheses
about why L-LDA performs much worse on the clus-
ter evaluation than BDM. First, several motifs contain
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718
Formulistic
conversations

121
Counsels proved wise
by experience

K2000
Hypocrites

J21.5
Do not leave
the highway

K2011
‘Wolf poses as 'grand-
mother' and kills child

Z18.1

so big?

What makes your ears

Fo11

Person (animal) swallowed
without killing

F910
Extraordinary
swallowings

Q410
Capital punishment

Fo13
Victims rescued from
swallower's belly

Q426
‘Wolf cut open and
filled with stones

F911.3
Animal swallows man
(not fatally)

"Once upon a time there was a little girl called ... And they all lived happily ever after." (i.e. the entire fairy tale text of Little Red Riding Hood) ‘

Figure 2. Motif sequence in ATU 333 Little Red Riding Hood (gray nodes represent observed motifs), expanded with the

ancestor motifs in Thompson’s Motif Index.

many stop words, although we filtered all words that
appear in more than fifty percent of all documents.
These content-free words provide little to no clue to
discriminate between motif categories, but in L-LDA
they play a rather large role in contrast to BDM. The
second reason for the superiority of BDM over L-LDA
appears to be that BDM incorporates the knowledge
from lower-level motifs into the more abstract motifs.
A clear example of this is the top-level motif ‘J: The
wise and the foolish’. Almost all top words are ex-
amples of characters in stories that are either wise or
foolish. We expanded the original motif set of a docu-
ment with ancestral motifs. The result of this design
choice is that the hierarchical relations between motifs
are only implicitly present. Because L-LDA assigns
each word in a document to a single motif, motifs that
occur in only a few documents will attract more lexi-
cally specific words than their ancestors that appear in
more documents. This ‘restriction’ does not apply to
BDM, where the same word may be assigned to both
lower-level and higher-level motifs. In sum, L-LDA is
capable of finding good representations of motifs, but
they seem unrelated and the knowledge from higher-
level motifs is not inherited by their children.

6. Conclusion

In this paper we applied Labeled LDA to the domain
of folktales. We have shown that L-LDA functions as
a competitive method to identify motifs in folktales.
However, it lags behind on a relatively simple retrieval
model that uses Okapi BM25 as its ranking function.

We evaluated the quality of the motifs found by L-LDA

47

and BDM against the most important motif classifica-
tion system in folktale research. The results showed
that both L-LDA and BDM are well capable of dis-
covering high-quality motifs for the lowest-level mo-
tifs. However, the motif representation discovered by
L-LDA for higher-level motifs are of low quality. In
contrast, BDM is able to exploit the hierarchical rela-
tions between motifs. The more abstract motifs are in
fact generalizations over lower-level ones.

One of the most interesting properties of LDA is that
it assigns each word in a document to a single topic.
As shown by Ramage et al. (2009), these word-by-word
topic assignments could allow us to detect which parts
of a text correspond to the tags assigned at the doc-
ument level. Likewise, we could use this information
to localize the specific places at which motifs occur in
folktales. Future research should therefore be directed
at improving the quality of motif representations as
discovered by L-LDA or, in competition with L-LDA,
the development of a system that incorporates the mo-
tif representations found by BDM, by finding those
parts of a text that support a detected motif best.

Acknowledgments

The authors would like to thank the three anonymous
reviewers, Theo Meder and Peter van Kranenburg for
their helpful comments. The work on which this paper
is based has been supported by the Computational Hu-
manities Program of the Royal Netherlands Academy
of Arts and Sciences, as part of the Tunes & Tales
project.



Identifying Motifs in Folktales using Topic Models

“(umnyoo Sur) y1-1 pue (uwwmiod 1o1) INAd Aq punoj zapuf fropy suosdwoy, jo jred

10J suorjejuasardal JIJOIN € oINSy

sasiodiod

ueydaje
JeY 19iselow piIyo o ueuder

‘Aipayeadas “Aoquuiey
‘leoy sb6e ‘unq

sosse|d |qe} ‘uo}
M ‘uoIsn|ouod ‘ejnouey)
‘speayaio} 49661q

‘eynoueyd

‘asneoaq ‘}sow

uojiels ‘Aasorusad
‘Burjeirenb ‘uewbes uewbes
‘dn Auny ‘pasesd

‘quuigo ‘ysnd ‘Banquiy

Kisyoing ‘1900 ‘Aem ‘660
A

‘lowaly| ‘payjonoid

‘yeuso Buipue|
‘SS8lp 0} ‘Jem plom
31 ‘OUUM JUBWIOW

,s1s0yb ‘sjinep aq o} ybnous sbuiy L, 10821

N ‘MapP “unuy
‘yorey ‘yueydwiniy
‘sjueydaje
‘pazijiqow

9|11S0Y ‘playulod ‘exiq
‘a)iym ‘asnoy pajuney

‘ljealls ‘paziqow \ueydere ‘exeg
“uawouw ‘sysoyb ysoyb

Anuapr usxeisiw s1alq0.

LL

‘Jofew ‘66s ‘sinu0d0o
‘ausoy ‘syueydsje
‘BBo asioy ‘|leis ‘sbBa

‘WNIOjeY.eq JEAIA  POOI] ‘WINIOJSME] JBAIA

‘pinom JebBuessaw
‘a|qe) ‘e ‘Mous

‘yorey ‘ainseal) ‘sem ‘yeyy
‘asoy} ‘ay ‘pue|

e ,'uoows 8y} Buinosey . 2" L6L I

“aBuassaw Jowiwey
“yooy ‘ajdoad ‘yosiga
‘Weuoln ‘ssQ ‘1sep|o
‘ebey|iA ‘ainseal) ‘mous
|dwin ‘uoow ‘wsyy

‘ajesawnua ‘yeadde
‘NoaquasA3 ‘quio

“uepodwi ‘sBimy

‘younyo ‘sdi

JUnoo ‘e8I ‘uebaq
‘Yo ‘sba| ‘uanes
‘Uoouw ‘Sapjo ‘PaYIYs
‘nds ‘younyo ‘esesyd
‘sjo|gnop ‘a1 ‘sdiys

,9s99Y0 10} BuINg (€ L6LLIP

\

‘anl

yred ‘uersiod
yoeio ‘sse|uoow ‘sinoy
ure ‘Aresianiuue adid ‘a19|dwoo ‘eynyy ‘sdwinf

‘aBreyosip Unnapuig
‘adid s)sem ‘yuelp
Id ‘seli0)s 1ouloo ‘ay

aisem ‘Buejo Joqybiau ‘winy yodied ‘wwwwz
‘axeme ‘}soyb ‘ued ‘nok
‘amus ‘sAes ‘uo ‘dos|s

‘uelblog ‘siajem Yapnb
18u109 “Jayyejpuesb i

sainiseb ‘wims
‘dos|s ‘Aluejuswow
‘fauoy ‘sisoyb ‘ysoyb
49|18} A10}s ‘onnbsow
19)INOPOOM “Ieaq

1s9p|o ‘pinom ‘Aoq

yonw ‘ainseay) ‘sle|gnop
‘wpay) ‘osfe ‘pey ‘gjdoad ‘mous
‘0} ‘oM ‘UiM ‘pInom ‘|dwig ‘ebey(iA ‘b

1ey ‘dwe|
‘paseadde Buiouep
‘BuimolB ‘uo

nd ‘paspul ‘Wbisul

‘lojem ‘quem ‘| ‘wiy
nq ‘eq 0} ‘ueyy

‘uoabid ‘e0] ‘sebueio

‘spuey ‘Ajuaneay
‘uoow ‘sdiys ‘wYD

‘sped Apoq

\pooysiepunsiw euswouayd [eaisAud. 018"

Buipuejsiapunsiw wouy uonoe sjeudoiddeu) :02g8Lr

‘10 ‘uo ‘e ‘ay} ‘ays

7~

uapew ‘Buiysesjes
‘lsnuepy ‘Jopje
AsdAB

‘sal0)s “4apybnep ‘beq
‘181d ‘1oun ‘Keuow

,80U9)

© JO BUIAIB BU} YIiM Pajosuu0d SSaUIBASID (0S LI

ul00 ‘Beq ‘b AsdAB
‘Rouwiyo “syybnep ‘desms
‘uowies ‘sdiys

‘deuy xoj ‘Jod ysi ‘%
‘Aeuow ‘Joly) ‘paezi| ‘sjun}

paysnd ‘eseyo
‘Irey ‘wrey ‘yiopyond
‘00p-8|poop
-8-3000 ‘peay
‘ahuep ‘a|paau
Buiusep ‘yo ‘dnihs
“Job ‘obesnes

‘Bunds ‘exse101d

uewom juesead
‘a|paau Bujusep
‘wey ‘aluaopy
ey ‘jowiie) ‘dnihs
‘abesnes Buo|
‘Bunds ‘exe1ld

f\j/

Jayjoue 1o} uaxesiw Bul

‘wnuofaxeq 1eAIA

} 8UQ. :608L1-"0SLLM

‘Uanesy ‘om ‘ssoq
‘Jures “8jed ‘pio

1sensey ‘jod sped
Apoq ‘Aued ewiue

snoajybu ‘uewAiay

1no ‘esnow ‘1eap
“YoIp asey ‘Yuiey

‘Jures “nj ‘uol
‘pi07 Yeled 4eNo

1$9010YD, 667002

Apeale ‘awedaq
‘pres ‘Ajoins

‘uam no ‘Aem ‘s
‘aloym ‘uoow ‘uayy
‘Jou ‘nok ‘a1 ‘ays
‘asoy} ‘ui ‘pue ‘ay)

papesoxe

abey|in ‘0aube ‘Buikouue

‘uoabid ‘oynbsowuy
sebuelo ‘uoow
‘sdiys ‘wipyo
“1o)NOPOOM Yeaq
‘wniojexeq JeAIn

‘18}J0 ‘pajsalajuIsIp

‘ay} ‘Sje0D ‘YoINyd

pajiun ‘uonesadood

‘p102U09 ‘AAnes
JoLeYO ‘paysasauIsip
‘anigolad ‘Buipjing
‘ysnd ey moy
‘Juswanow ‘|axeg
2Inyo ‘sjeod

‘Jenbied
‘Inydiay ‘Aep Jewwins
opuesb ‘jes|
‘abeys ‘Aolus ‘¥oois
‘Aued uaddoysseid

‘ue ‘asey ‘ay

‘papasoxe

;sbulpuejsiepuNSIW PINSQY ., 681 -"0SL M

Inineaq ‘siejs ‘uny
sba| ‘lewiue Jeuim
00}s ‘s[ewiue
‘Aued [ewjue

‘aley unj ‘e
‘1addoysseib ‘Jap0

Jubnouyieiod :66.r-009r

7~

180UBIPa]O [eId, 1092l

' Jamoy yoinyo Buinow ey  :gzeer

apIoap ‘snoixue
‘ueisiad ‘Ajuejuswow
Janu ‘se0b ‘fewiou
g ‘uey) ‘e ‘sem

‘40 ‘| ‘1Ienopoom ‘reaq

‘degls ‘wwwz ‘wwwwz
‘a|doad yBiuy ‘ewwsy

Asuoy

‘wajieey ‘oynbsow

‘Jopnopoom ‘reaq deuy xoj 406 ‘a1oym 10d ysy ‘deuy xoj

“snw ‘joxeg ‘A

beq ‘Aoq ‘Jeuwrey

‘apnyyesbul ‘Buimolb

SNOBUEY|SVSIW- UNOJ ME| BU} Ul SSBUIBAJ|D,
I u 19U} 10.:06111 0} ‘esneoaq ‘ebem

“oid ‘Buimo|b ‘Asuow
‘apnyresBul ‘oynbsow

“noy ‘uyor ‘puels

‘Koyuop ‘oxlaK

‘a18y) ‘Jou ‘oney ‘Reiuap ‘Ajpliom
‘opnbsow ‘06 ‘yy “Joun ‘uemy ‘piezi|
‘Aoq ‘e ‘puE ‘ay}  ‘SjuN} 4ONNOPOOM Yeaq

HNOD MB| BU} Ul SSBUIBARID 166 L1 -"0ELLM

‘pINoo ‘pauaddey ‘Rauow ‘Inep ‘a|qe}
‘Royuop ‘awed ‘sauueH “osedwa
“owue) ‘ob ‘Rouow MOD ‘ywsyoe|q

(suosiad asimun 1ayjo pue) s|004 ., 61220 -"00L LM

»

[eas oo 0} ‘urebe
‘auo8Wos ‘Ul ‘am
‘lewuou ‘||oy ‘alnue
‘uoos ‘pjo ‘agqhew
‘reay ‘sjdoad

‘ay) ‘euop ‘e

i

allanogpnQ ‘Aexuop
‘lInep Aoq ‘addeg
‘a|qe) ‘uaip|Iyo ‘spy
BN ‘Jewey ‘seuueH
‘fouow ‘elpoH ‘uosadwe
‘st ‘MOD “UNWSHoe|q
“ayjowpuelb ‘pooH

Buipiy pay oI ‘Jlom

0} BU} pUB BSIM BYL P

'So0p ‘IS ‘||e ‘aweys

AnbB ‘auoq “uny ‘uoy|
‘asnoy ‘ue ‘ueusysly
I ‘op ‘“#jeddoysseib

‘S80US UBPOOM ‘90}J00 ‘UERUIY
‘g|doad ‘peeuley ‘1918 ‘plo] ‘ees
‘f1Bue ‘Uis ‘Aexuop ‘aaw|abbid 1on0 ‘ysi

JONPUOD 8simun pue 8siM, (660 M- 002

48



Identifying Motifs in Folktales using Topic Models

References

Abello, J., Broadwell, P.; & Tangherlini, T. R. (2012).
Computational folkloristics. Commun. ACM, 55,
60-70.

Blei, D. M., Ng, A. Y., & Jordan, M. 1. (2003). Latent
dirichlet allocation. J. Mach. Learn. Res., 3, 993—
1022.

Karsdorp, F., Van Kranenburg, P., Meder, T., & Van
den Bosch, A. (2012). In search of an appropriate ab-
straction level for motif annotations. Proceedings of
the 2012 Computational Models of Narrative Work-
shop (pp. 22-26). Istanbul, Turkey.

La Barre, K. A., & Tilley, C. L. (2012). The elu-
sive tale: leveraging the study of information seek-
ing and knowledge organization to improve access to
and discovery of folktales. Journal of the American

Society for Information Science and Technology, 63,
687-701.

Meder, T. (2010). From a dutch folktale database to-
wards an international folktale database. Fabula, 51,
6-22.

Mimno, D., Wallach, H. M., Talley, E., Leenders, M.,
& McCallum, A. (2011). Optimizing semantic coher-
ence in topic models. Proceedings of the 2011 Con-
ference on Empirical Methods in Natural Language
Processing (pp. 262-272). Edinburgh, Scotland.

Nguyen, D., Trieschnigg, D., & Theune, M. (2013).
Folktale classification using learning to rank. Ad-
vances in Information Retrieval, 35th Furopean
Conference on IR Research, ECIR 2013 (pp. 195—
206). Moscow, Russia.

Ramage, D., Hall, D., Nallapati, R., & Manning, C. D.
(2009). Labeled lda: A supervised topic model for
credit attribution in multi-labeled corpora. Proceed-
ings of the 2009 Conference on Empirical Methods
in Natural Language Processing (pp. 248-256). Sin-
gapore.

Robertson, S., & Zaragoza, H. (2009). The probabilis-
tic relevance framework: Bm25 and beyond. Foun-
dations and Trends in Information Retrieval, 3.

Rosenberg, A., & Hirschberg, J. (2009). V-measure:
A conditional entropy-based external cluster eval-
uation measure. Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (pp. 410-420). Prague.

49

Rubin, T. N.; Chambers, A., Smyth, P., & Steyvers,
M. (2012). Statistical topic models for multi-labeled
document classification. Mach Learn, 88, 157-208.

Thompson, S. (1946). The folktale. New York: Dryden
Press.

Thompson, S. (1955-1958).  Motif-index of folk-
literature: a classification of narrative elements
in folktales, ballads, myths, fables, mediaeval ro-
mances, exempla, fabliauzx, jestbooks, and local leg-
ends. Indiana University Press.

Tsoumakas, G., & Katakis, I. (2007). Multi-label clas-
sification: An overview. International Journal of
Data Warehousing and Mining, 3, 1-13.

Uther, H.-J. (2004). The types of international folk-
tales: a classification and bibliography based on the
system of antti aarne and stith thompson, vol. 1-3
of FF Communications. Helsinki: Academia Scien-
tarium Fennica.

Van Gompel, M., Van der Sloot, K., & Van den Bosch,
A. (2012). Ucto: Unicode tokeniser. Radboud Uni-
versity Nijmegen / Tilburg University. Ilk technical
report edition.

Voigt, V., Preminger, M., Ladi, L., & Darédny, S.
(1999). Automated motif identification in folklore
text. Folklore. An FElectronic Journal of Folklore,
12, 126-141.



Combining Customer Attribute and Social Network Mining
for Prepaid Mobile Churn Prediction

Palupi D. Kusuma
Dejan Radosavljevik
Frank W. Takes
Peter van der Putten

PKUSUMA@LIACS.NL
DRADOSAV@LIACS.NL
FTAKES@QLIACS.NL
PUTTEN@QLIACS.NL

LIACS, Leiden University, P.O. Box 9512, 2300 RA Leiden, the Netherlands

Keywords: churn, call graph, social network mining, spreading activation

Abstract

Customer churn, i.e., losing a customer to the
competition, is a major problem in mobile
telecommunications. This paper investigates
the added value of combining regular tabu-
lar data mining with social network mining,
leveraging the graph formed by communica-
tions between customers. We extend classi-
cal tabular churn datasets with predictors de-
rived from social network neighborhoods. We
also extend traditional social network spread-
ing activation models with information from
classical tabular churn models. Experiments
show that in the second approach the combi-
nation of tabular and social network mining
improves results, but overall the traditional
tabular churn models score best.

1. Introduction

Churn, which is defined as the loss of customers to an-
other company, is a crucial problem in the telecommu-
nication industry. As the telecom market has matured
and opportunities for growth are limited, retaining ex-
isting customers has become a higher priority. In or-
der to minimize the churn rate, mobile telecom play-
ers have to form defensive strategies to identify and
present the appropriate incentive to subscribers with
high churn propensity.

The conventional churn models that exploit traditional
predictors, such as demographic information (e.g., age,
gender or location), contractual details (e.g., pack-
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age plan type, contract duration or price), usage facts
(e.g., voice call duration, the frequency of sending
text-messages) and/or other service-related informa-
tion (e.g., number of interactions with customer ser-
vice or number of dropped calls), are typically simple
and have a good predictive accuracy (Ferreira et al.,
2004; Hadden et al., 2006). However, the predictive ac-
curacy of these models cannot be guaranteed if there
is few customer data available, namely in the prepaid
segment of the telecommunication industry.

This paper investigates the extent to which social net-
work features derived from the graph formed by com-
munications between customers can be exploited to
improve churn prediction accuracy in the prepaid seg-
ment. Examples of such features include the number of
neighbors of a customer and the number of interactions
that a customer has with churned neighbors. This re-
search study was conducted at one of the largest tele-
com providers in the Netherlands, and a dataset con-
taining 700 million call records was used to assess the
quality of the various techniques discussed throughout
the paper.

We propose two novel models for churn prediction.
The first is a hybrid tabular model, which combines
both traditional predictors and social network features
to predict churn, aiming to gain significant lift. Logis-
tic Regression and the CHAID algorithm are utilized
to derive the tabular models. These churn models,
however, do not take into account the influential effect
of an individual’s decision to his/her social network. A
recent work by Dasgupta et al. (2008) has been able
to address this problem by constructing a churn model
based on a traditional social network mining tech-
nique, i.e., spreading activation models. The model
propagates the negative churn influence from one sub-
scriber to another in a cascade manner. Besides build-
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ing hybrid tabular churn models using a combination
of the traditional predictors and the social network
features, we also propose a second approach, which
extends the traditional propagation model to include
the output by traditional churn models.

The rest of the paper is organized as follows. Section
2 presents some related work within the field of churn
prediction. Section 3 discusses the call graph and pro-
posed algorithms. The research setup and the empir-
ical models are introduced in Section 4. In Section 5,
the experimental results and implications of all scenar-
ios are presented. Finally, Section 6 summarizes the
paper and presents some suggestions for future work.

2. Related Work

Churn has been widely analyzed not only in the
telecommunication industry (Ferreira et al., 2004;
Hadden et al., 2006; Radosavljevik et al., 2010), but
also, among others, in the online gaming (Kawale
et al., 2009) and banking (Prasad & Madhavi, 2012).
Many machine learning techniques, such as decision
trees, naive bayes, logistic regression, neural networks
and genetic algorithms, are often used to build the
tabular churn prediction models.

Ferreira et al. (2004) utilize contractual and demo-
graphic information of a Brazilian mobile telecommu-
nication provider to build several postpaid churn mod-
els using neural networks, decision trees, genetic algo-
rithms and hierarchical neuro-fuzzy systems. Besides
evaluating the predictive power, they also assess the
profitability value of those models, claiming that even
the churn models with the worst performance are still
able to save significant cost in the postpaid segment.
Hadden et al. (2006) exploit provisions, complaints
and repair interaction data to build the churn mod-
els. They claim that the regression tree model per-
forms better than one with neural networks or logis-
tic regression. However, there is no further informa-
tion regarding the performance comparison between
the complaints-based model and the benchmark model
based on demographic and contractual variables.

Radosavljevik et al. (2010) investigate the extent to
which Customer Experience Management (CEM) data
could improve prepaid churn prediction. Several Key
Performance Indicators (KPI) of service quality com-
bined with other subscriber data are used to train the
decision tree models. Since the CEM data is always
available, the constraint on lacking demographic in-
formation on the prepaid subscribers could be elimi-
nated. Although the CEM data is predictive, the em-
pirical study shows that there is insignificant gain on
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this model performance compared to the benchmark.

Several social network studies have been conducted by
utilizing mobile call graph data to examine the struc-
ture and evolution of social networks (Backstrom et al.,
2006; Seshadri et al., 2008), the human mobility pat-
terns (Gyan et al., 2012) and their social interactions
(Dasgupta et al., 2008). Dasgupta et al. (2008) ana-
lyze the influential impact of the churned neighbors to
their social circle by applying a spreading activation-
based technique similar to trust metric computations
(Ziegler & Lausen, 2004). Using call graph data, they
are able to show that churn can be propagated through
a social network. Although the study is limited to use
social ties information only, reasonable predictive ac-
curacy could still be achieved. The analysis identifies
that the churn propensity of a subscriber correlates
positively with the number of churned neighbors.

Kawale et al. (2009) conducted a similar study us-
ing social network data from a popular online gaming
community. They propose a new twist to the exist-
ing churn propagation model proposed by Dasgupta et
al. (2008) by combining the social influence and user
engagement in the game. The user engagement prop-
erty, which refers to the length of the playing session
during the observation period, can be classified as an
intrinsic variable. The research shows that the models
trained using a combination of social factors and this
user engagement property perform better than tradi-
tional propagation models. Using collective classifica-
tion techniques, Oentaryo et al. (2012) are also able to
demonstrate that the churn prediction accuracy could
substantially be improved by utilizing the combination
of traditional user profile and social features.

We apply similar ideas from the above mentioned
works. A customer’s decision to churn might not only
depend on the social influences but also on how they
perceive the products and services. On our initial ob-
servation, we found that the ratio of the immediate
churned neighbors to the number of adjacent neigh-
bors (degree) positively correlates to the churn behav-
ior. When half of the neighbors have churned, the
probability of a subscriber to churn is 2 times higher
than the baseline churn rate. It implies to some extent
that social behavior might have an impact on the sub-
scribers’ churning decision. It could be that the hybrid
models, which exploit both traditional predictors and
social relationships, could outperform the simple social
network and the tabular churn model built exclusively
using traditional predictors. However, the question
is also whether it adds actionable value over existing
data. We suspected there may have been some element
of publication bias: positive results get published more
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often, thus easier to find than non-significant or neg-
ative results, at least for trending topics. Hence, we
decided to evaluate the business value experimentally.

3. Methodology

A call graph can be derived from raw data of com-
munications between customers. This graph, further
discussed in Section 3.1, is essentially a social network
which can be leveraged in two ways. Classical 'tabu-
lar’ models are built on rectangular data sets, one row
per customer with subscriber level information. This
can be simply extended with attributes (columns) that
contain information derived from the social network,
as we will outline in Section 3.2. Likewise, a tradi-
tional approach to modeling social network dynamics
is the spreading activation model, which can be used to
model how customer behavior such as churn spreads
over the network. Insights from traditional tabular
models, more specifically churn scores, can be used to
improve these classical social network models, a tech-
nique on which we will elaborate in Section 3.3.

3.1. The Call Graph

The call graph can be constructed from the Call De-
tail Records (CDRs) provided by the telecom provider.
These CDRs contain detailed facts about mobile in-
teractions, such as source phone number, destination
phone number, the type of mobile communication, du-
ration and a timestamp. This information is mapped
to a directed social graph G = (V, E) as illustrated in
the Figure 1.

Type: Prepaid
Age: 30

Type: Postpaid
Age: 37

Type: Postpaid
Age: 55

Type: Postpaid
Age: 25

Type: Prepaid
Age: 21

Figure 1. Telecom call graph.

In this call graph, nodes denote subscribers and an
edge represents a mobile interaction between two sub-
scribers. The edge weight can be calculated from one
variable or a combination of interaction variables, e.g.,
voice call duration or SMS frequency. It could indicate
the interaction intensity or the relationship strength
between two nodes. As several interactions could ex-
ist between the same pair of nodes, we treat duplicate
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edges between two nodes as a single edge, by aggregat-
ing the weight values. The aggregation method applied
in this research is explained in Section 3.3.

3.2. Extended Tabular Churn Models

Many tabular churn models generally exploit either
subscriber profile information or social network statis-
tics separately. The predictive power of churn models
based merely on the traditional predictors might be
reduced in case of many missing values. In our pre-
paid churn study, we only have an access to limited
demographic data because prepaid subscribers are not
required to fill in their (accurate) personal informa-
tion. On the other hand, the social network features
might not be predictive enough to influence the churn
decision. Neither the traditional models nor the mod-
els based exclusively on social networks can cover all
aspects of churn on their own. Therefore, we propose
to combine both elements to predict churn, adding the
features listed in Table 1.

Table 1. Social network features used in the extended tab-
ular churn models.

CATEGORY VARIABLE

CONNECTIVITY Count of in/out-degree
Sum & average of in-/out-weight
Count & average of voice,
voice+SMS to/from neighbors
Total and average of edge weight*
Total interaction frequency with neighbors*
Total and average frequency with neighbors
for voice & SMS separately*
Degree, 2nd degree & 3rd degree count*

SMS &

CHURNER
CONNECTIVITY

Count of in/out-degree churners

Sum & average of in/out-weight with
churners

Count & average of voice,
voice+SMS to/from churners
Total & average edge weight with churners*
Total interaction frequency with churners*
Ratio of in/out-degree churners to the total
in/out-degree

Ratio of in/out-weight churners to the total
in/out-weight

Ratio of in/out voice, SMS & voice+SMS
frequency with churners to the total in/out-
weight

Ratio of churner weight to the total weight*
Ratio of interaction frequency with churn-
ers to the total interaction frequency*
Churner degree, 2nd & 3rd degree count™*
Ratio of churner degree to the total degree*
Ratio of 2nd churner degree to the total 2nd
degree*

Ratio of 3rd churner degree to the total 3rd
degree*

SMS &

*direction is not taken into account
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When creating the extended tabular churn models we
started with a model based on traditional predictors
and added connectivity features from the social net-
work call graph: the in-degree and out-degree, the
number of second degree neighbors, sum and average
of in-weight and out-weight calculated from duration
of voice conversations, SMS and a combination thereof.
We also added churn connectivity variables (in-degree
and out-degree with churners, etc.), as well as the ra-
tios of the total connectivity measures vs. the churn-
ers connectivity measures. A detailed overview of the
added social network graph features is presented in Ta-
ble 1. For a more detailed feature analysis, we refer
the reader to Kusuma (2013).

3.3. Extended Social Propagation Models

In this subsection, we discuss an extension of the
spreading activation model to measure how churn is
diffused around telecom social network (Dasgupta et
al., 2008). The churn propagation process begins by
initialization of all nodes. In this study, we set the
energy of non-churners using two different values (see
Figure 2). For the simple propagation approach, the
initial energy of non-churners is set to 0; for the hy-
brid extended approach, it is set to the churn score
returned from the regular tabular models.

Simple Propagation
1 1
ojoXol

Figure 2. Initial energy of the simple and extended propa-
gation technique.

Extended Propagation

0.5

In the propagation process, for a node x € V, the value
of En(z) represents the current amount of energy of a
node, and the En(x, i) represents the amount of energy
or social influence transmitted to the node z via one or
more of its neighbors at stage ¢ (Dasgupta et al., 2008).
After energy initialization, a set of previous churners
(seeds) is activated. In stage 0, the current energy
of the seeds En(x) is used as initial spreading value.
Therefore, the current energy value En(x) becomes 0
and amount of energy in a node x at step 0 or En(z,0)
becomes equal to 1.

In each consecutive stage i, the activated nodes trans-
fer a portion of their energy to their neighbors and
retain certain portion for themselves. The spreading
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factor 0 € [0,1] controls the proportion of the trans-
mitted energy, denoted by d x En(z,4) and the amount
of retained energy (1 — §) * En(x,i). A spreading fac-
tor value of § = 0.8 means that 80% of the energy is
transferred to the neighboring nodes and 20% of the
activated energy is retained by the node. This factor
value could also be seen as a decay measure because
the transferred energy will decline as it gets further
away from the source. It implies that the direct neigh-
bors will receive more influence than second degree
neighbor and so on. The trust propagation study of
Ziegler and Lausen (2004) has shown that people tend
to trust individuals trusted by own friends more than
individuals trusted only by friends of friends.

Since nodes can have multiple neighbors, the amount
of the distributed energy from an active node to each
neighbor depends on the tie strengths between the
node pair. In Figure 3, for example, the amount of
energy transferred from node 1 to node 2 might not
be the same as the amount transferred from node 1 to
node 3, because the edge weights are not equal.

Figure 3. Spreading activation in a weighted graph.

Let y be a neighboring node of an active node x (with
x,y € V). We denote the amount of energy transferred
from node z to node y in the i-th stage with En(z,y,1).
This amount depends on the relative edge weight of
the paired nodes. This is determined by a transfer
function f(z,y), described in Equation 3 below. The
amount of energy transferred is then:

En(z,y,i) =0 * En(x,i) * f(z,y) (1)
The amount of energy of node z after the spreading
computation is as follows:

En(z) = En(z) + (1 — ) *x En(x,1) (2)
There are multiple functions to determine the relative
weight between two nodes. The simplest method is us-
ing linear edge weight normalization function (Ziegler
& Lausen, 2004).

flaw) =w@y/Y vz O
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Here, f(x,y) denotes the relative weight of the edge
between x and y, w(x, y) represents the weight of that
corresponding edge, and Z(z,z) w(x, z) represents the
total weight of all edges connecting node x to its ad-
jacent nodes.

We propagated the churn energy through both a di-
rected and an undirected version of the graph. In the
directed graph, energy is propagated only to outgo-
ing edges, and in the undirected graph, both outgo-
ing and incoming edges are used. For churn propa-
gation, the remaining energy after termination ulti-
mately determines the probability of a network mem-
ber to churn. These churn probability scores are
then distributed into score intervals. The upper inter-
val groups contain more subscribers with high churn
propensity behavior compared to the lower interval
groups. Using the threshold score-based technique, the
subscribers/groups with churn scores above a prede-
fined threshold score can each be labeled as a ’churner’,
and otherwise as a 'non-churners’. As an alternative,
a cut-off point can also be determined by specifying
the target group size.

4. Experimental Setup

This section describes different specific techniques and
assumptions with respect to telecommunications data
in Section 4.1, after which the dataset and weighting
technique is discussed in Section 4.2. We then give
an overview of the seven different scenarios that were
used to construct the churn models, outlining our ex-
perimental setup in Section 4.3.

For our experiments, we use Chordiant Predictive An-
alytics Director software to automate variable dis-
cretization, variable selection and grouping, to train
the scoring models and also to compare the models
performance. The default evaluation statistic that is
used to measure the performance of the predictors and
models is Coefficient of Concordance (CoC). CoC mea-
sures the area under the Lorenz curve formed by the
percentage of cases with positive behavior against the
percentage of cases with negative behavior for each
unique score (Harell, 2001).

4.1. Operational Definition of Churn

We constructed models for the prepaid and postpaid
telecom segments. Although the definition of churn is
different for each segment, we will only discuss the pre-
paid results because both studies have come to the sim-
ilar conclusion. Unlike postpaid subscribers, prepaid
subscribers are not bound by a contract, which makes
it easier for them to churn. Prepaid subscribers need
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to purchase a credit voucher before using any telecom
service. If they do not have sufficient voucher credit,
they could not initiate any calls, send SMS/MMS or
connect to internet. They could re-enable the service
by recharging or topping-up their voucher credit.

A prepaid subscriber is disconnected from the network
and he/she is marked as a churner after six consecu-
tive months of inactivity. A prepaid activity could
be translated to an outbound voice call, an inbound
voice call, an outbound SMS, a data usage or a com-
mercial voucher recharge, also known as top-up. As
churn should be detected as early as possible, the dis-
connection date might not be the appropriate churn
date measure (Kraljevic & Gotovac, 2010). The pre-
paid subscribers might be long gone before they are
actually disconnected from the network. Therefore, we
define churn as two consecutive months of inactivity.
This definition is aligned with many internal studies
that are conducted within the company.

4.2. Dataset

We use the CDRs from the whole month of Febru-
ary 2012, which is roughly about 700 million records,
to construct the social graph. We include subscribers
who have at least one call in February and we base our
social network graph on the interactions that occurred
in that month. The end goal is to use the traditional
predictors as well as the social network information
obtained in February, March and April 2012 to pre-
dict churn in June 2012. We assume that churn is
also a social networking phenomenon, thus subscribers
that communicate with people that have churned are
more likely to churn themselves. Therefore, we la-
bel the nodes/subscribers that churned in the period
before May 1, 2012 (‘observation 1’ in Figure 4) as
seeds/churners of the propagation graph explained in
Section 4.3. The churn we are trying to predict oc-
curs between May and June 2012 (‘observation 2’ in
Figure 4).

start record CDR

jan feb J mar apr may jun Jju[ g

end record CDR observation 2 (may+jun)

observation 1 (mar+apr)

Figure 4. Call Graph Details.

In this research study, we only consider the duration of
voice calls in minutes and the count of text messages.
We could not explore mobile interactions utilizing the
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data connection, i.e., using over the top (OTT) ser-
vices!, due to legal issues. Within the company, the
postpaid cost of making one minute of a voice call is
the same as one SMS. In the prepaid segment, SMS is
typically charged roughly half of a minute of voice call.
Therefore, we furthermore assume that a text message
is equivalent to a voice call of 30 seconds. Hence, we
could generalize the edge weight w(zx,y,t) between a
pair of nodes x and y at time ¢ to include both types
of mobile communication, voice calls and SMS and all
interactions could all be measured uniformly in sec-
onds. The identifier ¢ represents the hourly timestamp
at which the interaction starts, and is ranged from 1
until 29 February 2012.

if voice call
if SMS

L

30, (4)

w(z,y,t) =w(z,y,t)* {

Interactions that occurred outside working hours are
assigned twice the weight to emphasize their impor-
tance. The underlying assumption here is that inter-
actions within working hours mostly indicate commu-
nication of professional nature, whereas interactions
outside working hours may involve communication of
more personal nature (e.g., friends, family), which
could have higher influence on the decision to churn.
Motahari et al. (2012) shows that members of a fam-
ily /friends social network are more likely to call each
other on the weekend and the engagement ratio value
within the family/friends network is at least twice as
much compared to the rest of the population. There-
fore, we introduce a weight scale p(t), which is defined
as follows:

if t=weekdays (8-17)
otherwise

(5)

(6)

We also assume that a recent interaction should carry
more weight than older ones. Therefore, the daily de-
cay rate a = 0.2 is manually selected. The weight
value of an edge that is measured on a certain day ex-
ponentially decayed according to a predefined rate as
follows:

w(z,y,t)" = p(t) x w(z,y,1)’

—axd (7)
Here, the symbol d corresponds to the gap measured in
days between the interaction timestamp and the end
of the observation period. In our case, d is equal to

w(z,y, )" = w(x,y,t)" xe

! An over the top service is utilizing the telecom network
to perform. However, it does not require any explicit affili-
ation with the network provider. Examples of over the top
application are WhatsApp, Skype or Viber application.
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28 measured from 1 until 29 February 2012. In the
end of the observation period, the weight values are
aggregated. As aresult, each node pair could only have
maximum one edge in each direction, so two edges in
total. The equation below formulates the aggregation
process of the weight values.

w(z,y) = Zw(m,y,t)'” (8)
For an undirected graph, we could simply add up the
weights for both directions together as follows:

w(z,y) =Y wlw,yt)" + Y wly.z,t)" (9)

4.3. Churn Predictive Models

To investigate to which extent social network data
could be used to predict churn and possibly could im-
prove churn prediction performance, we trained three
tabular data mining models using scoring algorithms
and four social network models using a spreading ac-
tivation algorithm (see Figure 5).

Traditional SN Model 1
Predictor Features +

Scoring Model Scoring Model Model 2
——— N—
roieine ]y uosets7 |

SN Boosting

Energy Model 1 into

Propagation Model 4

\________/ ~—

Figure 5. Implementation scenarios.

4.3.1. SCORING MODELS

We apply a logistic regression and a CHAID decision
tree algorithm to train our three scoring models:

e Model 1: simple scoring model
e Model 2: social network (SN) scoring model
e Model 3: extended scoring model

Model 1, a simple scoring model, is trained using the
traditional churn predictors, using features such as de-
mographic, contractual, handset and usage informa-
tion. We employ this model as the benchmark model.
Model 2 is a social network scoring model, which fo-
cuses solely on the social network attributes extracted
from call graph, such as the number of incoming and
outgoing ties of the first and second degree neigh-
bors. The extended scoring model or the second hy-
brid model, Model 3, combines the dataset of the first
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and the second model. This last model is learned from
both social network features as well as the traditional
churn variables.

4.3.2. PROPAGATION MODELS

The remaining four models are trained using energy
propagation techniques based on the previously dis-
cussed spreading activation algorithm:

e Model 4:
e Model 5:
e Model 6:
e Model 7:

simple propagation model

extended propagation model

simple propagation model undirected
extended propagation model undirected

March and April’s churners are used as the source of
the energy propagation. Each churned node is given
an initial energy of 1. Model 4, which is a simple prop-
agation model, sets the initial energy of non-churners
to 0. Model 5 is actually boosting of Model 1 into
Model 4. It indirectly incorporates subscribers’ intrin-
sic information into the propagation model. Instead
of setting the energy of non-churners to 0, this model
assigns the churn score obtained from Model 1 as the
initial energy of the non-churner nodes. The intuition
behind this idea is that a subscriber might already
have a certain tendency to churn due to his/her expe-
rience with the provided service. Model 6 and Model 7
are similar to Model 4 and Model 5, except that those
models are trained using an undirected instead of a
directed graph.

The total energy value that remains after termination
is assumed to be the probability of a network member
to churn. To study the influential effect of churned
neighbors in the social network, we then compare the
propensity values of non-churners to the actual known
churn class.

5. Results

In this section, the empirical result for each of the im-
plementation scenarios is discussed (see Table 2 and
Figure 6). We present and discuss only the scoring
models based on decision trees, because these mod-
els have a slightly better predictive performance com-
pared to the ones built using logistic regression. More-
over, we only include propagation models with the
spreading factor that yield the best prediction results.

Model 3, which is the hybrid model that combines tab-
ular churn predictors and social network variables de-
rived from social network graph, has the highest CoC
score on the test set (64.98%). Since it only slightly
outperforms Model 1 (64.88%), we can conclude that
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Table 2. Coefficient of Concordance of the scoring and
propagation models.

PERFORMANCE ON

TRAIN SET  VALIDATION SET TEST SET
MODEL1 65.48 64.47 64.88
MODEL2 57.93 56.72 56.57
MODEL3 65.65 64.45 64.98
MODEL4 53.34 53.43 53.04
MODELbS 55.26 54.58 55.24
MODELG 52.07 52.15 52.26
MODEL7 58.39 57.66 58.30
o Gain Chart

Al

Cumulative Positive
B 8 8 88 3 8 8

5

0 4

Cumulative Lift

S0 &0 70 80 S0 100
Cases (%)

=— Model 5: Extended Propagation

== Model 6: Smple propagation Undirected

Model 7: Extended Propagation Undrected

Random

20 K

— Model 1: Smple Scoring
Model 2: SN Scoring

- =Model 3: Extended Scoring

— Model 4: Simple propagaion

Figure 6. Gain and Lift chart of all models.

adding social network features on top of the traditional
churn predictors does not appear to provide any sub-
stantial improvement for our scoring model. Model
2 built solely using social network predictors has the
lowest predictive accuracy compared to the rest of the
scoring models (56.57%). By targeting the top 30%
of the subscribers, Model 2 can find only 37% of the
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churners, while Model 1 and Model 3 are able to return
about 50% of the churners. The lift chart shows that in
the top 30% of the cases Model 2 has cumulative lift of
130%, whereas other scoring models have cumulative
lift of 160%. In other words, the information derived
from the social network is weakly predictive by itself
and it fails to outperform the predictive power of the
traditional predictors.

As expected, the extended propagation models (Model
5 and Model 7), which incorporate churn scores of the
simple scoring model as the initial energy value in the
propagation process, outperform the traditional social
network propagation models (Model 4 and Model 6).
These extended or hybrid models provide better pre-
dictive accuracy than the simple propagation models
for the directed and the undirected graph. By tar-
geting 30% subscribers, Model 7 is able to correctly
predict about 45% churners. It returns 5% less than
the tabular churn models, Model 1 and Model 3. Al-
though Model 7 incorporated the traditional predic-
tor elements in the propagation process, the predictive
power is still lower than that of the traditional tabular
churn scoring models.

The simple propagation models that incorporate only
the social neighborhood information, Model 4 and
Model 6, have even lower performance compared to
Model 2. Unlike Model 2, the simple propagation
model uses only the previous churner information
within the social network without considering the in-
dividual churn propensity. This leads us to believe
that the churning behavior of neighbors does not have
enough influential effect on other members within a
prepaid telecom subscriber social network. Traditional
churn predictors apparently have a stronger influence
on churn compared to social relationships.

6. Conclusions and Future work

Throughout this paper we have investigated the ex-
tent to which social network information can be used
to predict telecom churn, and how this information
could potentially improve the predictive performance
of the conventional churn prediction method. We have
assessed the performance of models constructed us-
ing the classical tabular data mining, the social net-
work mining and the combination of both mining tech-
niques. The first hybrid model is built by extend-
ing the traditional tabular churn predictors with so-
cial network variables extracted from the social graph.
The second hybrid model is obtained by incorporating
results of the traditional tabular churn models to the
social propagation graph.
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The performance of our models was verified using a
large dataset of 700 million call data records. Our
initial observation shows that the churn probability is
positively aligned with the number of churned neigh-
bors. The regular tabular churn models and the tra-
ditional social network models constructed exclusively
using social network information score the least. This
indicates that social network information alone is not
sufficient to predict churn. Overall, the traditional
tabular churn models have the best predictive accu-
racy. The added value of the social network variables
to the tabular churn models is rather minimal. Al-
though the second hybrid models are able to outper-
form the regular propagation models, it still could not
beat the performance of the traditional tabular churn
models. The contribution of traditional predictors to
churn prediction is substantially higher than that of
the social network behavior. Moreover, the perfor-
mance gain of both hybrid models is not substantial
enough to justify the computational costs.

The current research study only explores the negative
influential effect of previous churners within the so-
cial network. Future research could potentially be fo-
cused on removing this limitation. The influences from
both churners and non-churners could be taken into
account, as subscribers might spread messages based
on how they perceive the product/service quality. As-
suming bad news can have a stronger influential effect
than good news, positive influence from non-churners
to stay within the network might not be as strong as
negative influence from churners. Since our energy
propagation model is purely derived from node and
neighborhood-based relationships, the spreading acti-
vation computations are done locally and subscribers
do not have knowledge beyond their direct neighbors.
Other algorithms, for example from the field of com-
munity detection, are capable to identify the role of
subscribers within the social network, such as influ-
encer or adopter. Rather than targeting all future
churners, we can minimize our resources by focusing
only on churners with high influential power.
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Abstract

Common approaches to product recommen-
dations are offer level propensity models and
collaborative filtering. These methods are
typically used for respectively a low or a high
number of products, and come with specific
limitations. In this paper we introduce pref-
erence based approaches to product recom-
mendations, aimed at filling the gap between
these methods. This approach can be used
for any expected value decision problem, with
choices across alternatives with common sets
of attributes.

1. Introduction

A common way to approach product or offer recom-
mendation problems is to construct a propensity model
for every product predicting the likelihood of a positive
response. This approach becomes unmanageable when
the number of products grows large, changes dynam-
ically at run time or when outcomes are sparse. Al-
ternative approaches are collaborative filtering or rec-
ommender systems, but these methods are typically
limited to interaction or purchase history, and can’t
deal with so called ’cold start’ situations when a given
customer hasn’t built up any history yet.

In this paper we present two preference based ap-
proaches to this problem. The first method uses ex-
plicit models to model customer preferences for spe-
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cific product attributes, for example a brand or price
range. The likelihood to accept an offer is then derived
from the likelihood of accepting specific product or of-
fer attributes, given customer, contextual and history
data. In the second method simply a single model is
used, and product attributes are added to the other
inputs for the model. The preference based approach
is not limited to product recommendations, but can
apply to any decision problem leveraging an expected
value framework with a large and dynamic number of
alternatives to choose from.

The paper is organized as follows. In section 2 we re-
view relevant background concepts. Section 3 outlines
the proposed algorithms, followed by an experimen-
tal evaluation in section 4. We end the paper with a
discussion (section 5 ) and a conclusion (section 6).

2. Background

Before presenting our proposed preference based meth-
ods in later sections, this section reviews some relevant
concepts from decision making under uncertainty as
well as the reference approaches for making product
recommendations that we are aiming to complement.

2.1. Decision making under uncertainty

From an application point of view the scope of our
problem domain is larger than classical ecommerce rec-
ommendations. We focus on so called Next Best Ac-
tion (NBA) systems: engines that provide real time
recommendations in all customer interactions, across
digital channels such as the web, mobile and social
networks, as well as in more physical domains such as
contact centers, shops, ATMs etc. These recommenda-



Recommending Products using Preference Based Modeling

tions may cover more purposes than just recommend-
ing products, and there are more factors that go into
the decision than just the likelihood of an offer be-
ing accepted. In other words, the methods presented
in later sections provide a simplified view of both the
problem space and approach, but can be further gen-
eralized.

The concept of NBA may be new, but a classical
framework can be used to model some of the decisions
in NBA: expected value, later generalized to expected
utility; an early example is Blaise Pascal in 1669 (Pas-
cal, 1995). The idea is that when a choice needs to
be made across alternative courses of action, the alter-
native needs to be chosen with the highest expected
value, the summation of likelihood times value for each
of the outcomes. For example, to decide between of-
fering A, B or C you choose the offer with the highest
likelihood to be accepted times the value (for example
profit) on an accept. There are some issues with this
approach, outside the scope of this paper, for example
it assumes that a decision now does not impact future
decisions. In practice it most certainly will; customers
and particularly employees will lose trust in these sys-
tems if offers are recommended that are high value but
low probability to be accepted.

In the scope of this paper the focus is on the likelihood
of positive outcomes. Negative outcomes are ignored,
as well as value and other business rules, strategies
or priorities driving the decision. This can easily be
added in real world implementations.

Another relevant decision theoretical concept is multi
attribute utility theory (MAUT) (Dyer, 2005). As out-
lined in the introduction we aim to lift limitations of
common propensity modeling and collaborative filter-
ing by modeling customer preferences. The core idea of
MAUT is that when choosing from alternatives, once
can consider a common set of criteria, with a utility or
preference function defined for each criterion. In our
preference based methods we use product attributes,
either as outcomes (for example predicting the likeli-
hood of accepting an expensive product) or as inputs
(predict offer acceptance based on price, in addition
to customer and other contextual data), thus model-
ing preferences for each customer. This can be seen as
a special case of a MAUT approach, in which attribute
level utility functions are automatically learned.

2.2. Product recommendation algorithms

The preference based methods we will present in the
next section onwards are meant to complement other
common methods used for product recommendations,
such as offer level propensity modeling and collabora-
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tive filtering.

In offer level propensity modeling one model is used
per product to predict the likelihood of a positive out-
come (click, accept, conversion), based on customer
data, real time contextual data and past interaction
and outcome history. This is then combined with value
factors, exclusion rules and other business heuristics to
priority rank recommendations. This lends itself well
to domains with deep, offer specific decisioning such
as financial services, but becomes impractical when
there are thousands of products or more. This could
lead to an explosion of models, the lack of outcome
data for certain products could be an issue and the re-
lationships and similarities between products are not
leveraged.

An alternative approach that is often used for rec-
ommending across many products (up to hundreds of
thousands or millions) is a collaborative filtering rec-
ommender system approach. Amazon is one of the
classical examples: ’people that bought these books
also bought...” This approach has limitations in the
sense that only interaction history is leveraged, not
necessarily other inputs such as customer characteris-
tics or contextual data. It also suffers from the cold
start problem: if there is no interaction history yet
for a given customer or history is sparse, it will be
hard to make relevant recommendations. We have
previously experimented with a hybrid approach that
combines customer and offer level modeling and deci-
sioning with collaborative filtering, based on Mahout,
which includes a Hadoop and MapReduce based rec-
ommender system (Pegasystems, 2012).

The preference based methods are targeting problem
domains that are in between these two approaches,
i.e. product recommendations for products with thou-
sands to tens of thousands of product instances and
single set of product attributes. This can be general-
ized to any decision problem with similar number of
alternatives and a common set of criteria attributes,
with automated learning of preferences over these cri-
teria.

3. Preference Based Product
Recommendations

In this section we describe the proposed algorithms for
preference based product recommendations, which are
using an online learning propensity model. We will
introduce the online learning method and then show
how such a model can be used for composing the two
preference based approaches.
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3.1. Adaptive models

Our solution to self learning models is a closed-loop
system that automates the model creation, deploy-
ment, and monitoring process (Walker & Khoshafian,
2012). Tt is powered by self-learning algorithms that
are able to learn from customer feedback in each in-
teraction, therefore establishing customer preferences
incrementally while collecting historical data. The
adaptive model can use various sources of information
about the customer as predictors, such as customer de-
mographics information like age, gender, house, credit,
balance, etc. and real time contextual data. It is es-
sentially a scoring model, predicting the likelihood of
a positive outcome such as a click on a banner, accep-
tance of an offer or actual conversion. The adaptive
model covers the following steps in the learning and
prediction life cycle:

e Data Analysis and pre-Processing: for all can-
didate predictors, the adaptive model keeps the
counts of positive and negative outcomes as suf-
ficient statistics, at a granular level. For numeric
predictors this is done at the level of a large num-
ber of numeric bins (f.e. age=18-20, 21-23, etc),
for nominal predictors for each of most frequent
occuring nominal values (f.e. product code = A,
B, C etc). We periodically group the numeric bins
and nominal values into larger categories, by test-
ing whether there is any significant difference in
the likelihood of a positive outcome between bins
or nominals. These larger categories will be used
by the model, to ensure that the model is not
just accurate but also robust, even when it is just
starting to learn.

e Sub set feature selection: this is done by analyzing
the correlation between candidate predictors. We
use an online algorithm to keep track of correla-
tions between candidate predictors, and only the
best ones out of each group are used for the model.
A correlation threshold can be configured to con-
trol the degree of correlations for filtering. Any
other real time sub set feature selection method
could have been used in this step.

e Model Scoring: adaptive models use a Naive
Bayes like technique to combine the selected pre-
dictors to generate a score, thus adaptive model
generates robust and highly predictive scoring
models. The quality measure used for evaluating
a scoring model is the Coefficient of Concordance
(CoC) (Lin, 1989). Rank concordance methods
are preferred because outcome distributions may
be highly unbalanced.
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e Post-processing:  typically uncalibrated scores
produced by the scoring model cannot be used
directly as probabilities, as underlying model as-
sumptions are rarely met by real world data.
Naive Bayes is known to perform surprisingly well
for ranking based on model scores, even if the
independence assumption of inputs is violated.
However, the absolute estimate of probability may
suffer in this case (Domingos & Pazzani, 1997;
van der Putten & van Someren, 2004), and a
proper estimate is key for comparing recommen-
dations properly. The adaptive model thus imple-
ments an algorithm to transform model scores to
propensities, by binning on the model score range
and estimating the likelihood of a positive event
for each of the bins. This concludes the adaptive
life cycle from the raw predictor inputs to propen-
sities.

3.2. Turning Real-time Contextual Data and
Interaction History into Predictors

We have mentioned that adaptive models are able to
use customer demographics as input data. During the
customer interaction, real-time contextual data can
also be taken into account as predictors for the adap-
tive model. We list a number of potentially predictive
data points during a customer interaction:

e Customer intent information such as reason for
a call into a contact center (leaving, enquiring,
complaining)

e Channel specifics such as the the type of agent
that handles the call, browsing history, device
used for the interaction

e History about previous recommendations, inter-
actions, outcomes and behavior

In many situations, real time contextual information
turns out to be very predictive. The experiments will
show how important such attributes can be.

3.3. Preference based methods

As discussed the goal of this paper is to provide pref-
erence based approaches, complementing the reference
approaches of either using one model per product or
using a collaborative filtering recommender system ap-
proach.

The first preference based approach is the so-called
” Single Adaptive” approach. Rather than using one
model per product learning from customer and con-
textual predictors (or leveraging collaborative filter-
ing), only a single model is used for all products in a
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product category that also takes product attributes as
an input, so that we can scale towards many product
instances that can change dynamically at run time.

The second preference based approach is the ” Com-
bined Adaptive” approach. It is a two-layer method
that combines a set of propensity models predicting
the likelihood of certain product attributes to be ac-
cepted (f.e. price ranges, brands etc), as opposed
to products, thus modeling the ”preferences” of cus-
tomers towards certain product features. This ap-
proach is elaborated as follows.

We reuse the binning and grouping capabilities in the
adaptive model to determine a small number of binned
product attributes to focus on as outcomes. For exam-
ple, the product attribute ”Color” has three resulting
bins: "Red”, "Blue”, and ”Others”. We then create
adaptive models to track a user’s propensity towards
accepting these product attributes (likelihood of ac-
cepting a "Red” product etc). Note that the predic-
tors now contain only customer and contextual data,
but no product attributes.

Second we combine the propensities of all product at-
tributes to generate a final propensity for each product
instance, since one product is uniquely characterized
by the set of product attributes. The combination
methods can include a simple average over all propen-
sities, or a weighted average in which weights are based
on the performance of the adaptive models.

The binning and grouping of predictor values are crit-
ical to keep the number of models tractable in this ap-
proach. For example, with 10 attributes and 10 possi-
ble bins for each attribute, we will define 10+ 10 = 100
adaptive models. In turn we could in theory model
10'°% = 1 billion different products, though in practice
we will need to score all eligible product instances for
a single customer interaction.

4. Empirical Evaluation

In this section we present the empirical evaluation of
the proposed approaches for customer behavior pre-
diction, based on an Event Recommendation Dataset.
We first describe the data and the experimental setup
in detail. Then we further analyze and compare the
performance of predictors and algorithms under study.

4.1. Experimental Setup

We use a publicly available dataset from the Event
Recommendation Engine Challenge, which is a data
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mining competition hosted on Kaggle (Kaggle, 2013)?.
The task is to predict what cultural events users will
be interested in based on events they bought tickets for
in the past, user demographic information, and what
events they have seen and clicked on. The data that we
used for experiment include the following information:

e Interaction data contains which user is in-
terested in which event. It has the following
columns: userid, eventid, invited, timestamp, in-
terested. ”Interested” is a binary variable indicat-
ing whether a user has seen and clicked on the
event.

e User data contains demographic data about
users, including the following columns: wuserid,
locale, birthyear, gender, joinedAt, location, and
timezone.

e Event data contains around 110 columns of in-
formation about events. They include eventid,
starttime, city, state, zip, country, latitude, and
longitude. The other 101 columns are countl,
count2, ..., count100, count-other, where countN
represents the number of times the Nth most com-
mon word stem appears in the name or description
of the event. count-other is a count of the rest of
the words whose stem was not one of the 100 most
common stems.

The interaction data has 15398 records in total, and
it contains 2000+ unique users and 8000+ events. We
use a 80-20 split into train and test datasets. Strati-
fied sampling on the user’s total number of events is
performed for splitting.

We use ”Coefficient of Concordance” (CoC) (Lin,
1989) to measure the performance of predictors and
models. CoC measures how good a model in discrimi-
nating good cases from bad cases. It is a value between
0.5 (random distribution) and 1 (perfect discrimina-
tion). For binary outcomes, CoC is identical to the
area under the receiver operating characteristic (ROC)
curve (Fawcett, 2006) (AUC). The AUC is related to
the Gini coefficient G by the formula G = 2 * AUC -
1.

We describe in detail the definition of models based
on the binning of product features using the event
dataset.
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Name Role Binned Grouped Grouped ‘
Intervals | Intervals Perf..ance
[Z] Ing Predictor 201 8 62.56
[iz3] lat Predictor 201 8 62.32
(g city Predictor 201 4 57.3
5| country Predictor 80 4 56.83
[i23] c_other Predictor 200 g 56.63
[z c_52 Predictor 16 3 55.56
= c 3 Predictor 31 4 53.97
[iZ3] c_28 Predictor 12 2 53.56
[ c 6 Predictor i3 5 53.48
[ < & Predictor 20 3 53.29

Figure 1. The predictive power of event features as predic-
tors in Predictive Analytics Director (PAD). The binned
intervals are the initial number of bins (max 200 bins +
1 bin for missing values). The grouped intervals are the
number of bins after predictor grouping. Performance is
measured using CoC.

4.2. Binning of Product Attributes

As described above, our products (or events), contain
110 features including location information and counts
of popular words. If we want to define models on the
values of numeric features, naturally we will have to
discretize values into ranges or bins. Moreover, it is
important to reduce the total number of models in
the system, for which we use the predictor binning
and grouping capabilities in the Predictive Analytics
Director (PAD) tool. Figure 1 shows the top ten pre-
dictors ranked by the performance CoC. We can see
that the location information such as latitude and lon-
gitude of the event, and some keywords (e.g. c-other,
¢52) are among the most predictive of all event fea-
tures. After binning and further grouping of bins, the
resulting bins of predictor values typically range from
2 to 10. Figure 2 shows one example binning result
for feature ”country”. From initially 80 countries it
is reduced to 4 groups. For instance, ”Cambodia”,
”?Canada”, and ”United States” are grouped into one
statistically robust bin. Obviously these countries are
very different, but from the perspective of accepting
offers these are similar. As a result, we define 4 sep-
arate adaptive models to track the propensity of each
bin. When making a prediction, an event’s ” country”
value will fall into one of the bins, and the propensity
of that model will be used as the likelihood for the
feature ”country”.

The binning and grouping capabilities are essential to

!The notions of ”Products” and ”Events” are used ex-
changeable in this section. The events can be treated as
products to be recommended to the users.
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Indonesia
country
[ Development set Cases (%) | === Development set purchase

Figure 2. Grouping results for the event feature ” Country”.
From initially 80 countries it is reduced to 4 groups. The
percentage of cases in each group and the rate of clicking
interest are shown.

the Combined Adaptive approach. We choose the top
10 predictors and have in average 5 bins per predic-
tor, therefore around 50 Adaptive models are created.
These models can in turn be used to track propensities
for a large number of events (e.g. there are 3 million
events in the data set).

4.3. Analysis of Predictor Performance

Figure 3 shows the top 15 predictors by performance
out of all predictors. We have stated in Section 3
that real-time contextual data gathered during the
customer interactions are typically predictive informa-
tion. In this particular experiment, we have derived a
number of attributes from interaction history, for ex-
ample:

pneg: count of negative responses in previous interac-
tions with the user.

lastoffer_pos: whether the user’s response to the last
offer is positive or not.

ts_lastoffer: time duration since the last interaction
with the user.

We can see that the derived attributes from interaction
history are the best performing predictors, with CoC
up to 70% (pneg). On the other side, the best predic-
tor from user demographics is "locale” (53% CoC).

Figure 3 also shows the predictor grouping results after
PAD correlation analysis. The correlated predictors
are grouped together and we can choose to use only
the best predictor in the group. For example, the set
of derived attributes are largely correlated with each
other, so we can select pneg from this group in the
scoring model. There is a parameter called correlation
threshold to control the granularity of grouping. Pre-
dictor grouping can be used to reduce the total number
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Group | Use group | Use p..ictor | Predictors | Grouped...ormance |
Group 1 pneg 70.22
pcount 69.88
lastpos_id 69.78
ts_lastpos 69.7
ppos 69.56
ts_lastoffer 68.99
lastoffer_id 68.9
Group 2 lastoffer_pos 6314
Group 3 Ing 62.56
lat 6232
Group 4 city 573
country 56.83
Group 5 c_other 56.63
Group 6 c52 55.56
Group 7 c3 53.97

Figure 3. Performance of the top 15 predictors and the pre-
dictor grouping results by PAD correlation analysis.

Table 1. Performance comparison of Naive Bayes, NBTree,
Random Forests (WEKA), and the adaptive model ap-
proaches. The model build time is the time elapsed for
model training. CoC is calculated on the test set.

ALGORITHM CoC MODEL BuiLD TIME
NAIVE BAYES 0.729 1.3 SEC
NBTREE 0.786 322 SEC
SINGLE ADAPTIVE 0.783 13.6 SEC
COMBINED ADAPTIVE 0.803 13.6 SEC
RANDOM FORESTS 0.821 6.6 SEC

of predictors used in scoring.

4.4. Model Performance Comparison

First we evaluate the performance of Single Adaptive
compared to Combined Adaptive approach. Figure 4
shows the ROC analysis of both models. The CoCs
are close with 0.783 and 0.803, respectively. When we
analyze the ROC curve, we can see that the combined
approach outperforms the single model more clearly
on the lower-left region of the curve. This is the re-
gion of interest: we typically only show a very small
number of top recommendations. The improvement
by the combined approach is explained by the intro-
duction of partitioning into the multidimensional data
space. A manual partition by the product features,
together with the reduction of models by binning and
grouping, achieves a good balance between model com-
plexity and predictive power.

Second we compare our adaptive approaches with a
number of related classifiers in WEKA (Witten et al.,
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Figure 4. ROC Analysis and Comparison of the Single
Adaptive and the Combined Adaptive approach. The ra-
tio of total Negatives vs total Positives is 3 vs 1. CoCs of
the Single Adaptive and Combined Adaptive are 0.783 and
0.803, respectively. The Combined approach outperforms
clearly on the lower-left region of ROC Curve.

1999), and compare their performance as well as model
building time. We can see that the adaptive models
outperform the Naive Bayes classifier (with Entropy
Discretizer) in WEKA significantly. This can be ex-
plained by the advanced data analysis functionality,
especially binning, grouping, and correlation analysis
in the adaptive model. Interestingly, the Combined
Adaptive model based on manual partitioning of prod-
uct features, outperforms the NBTree (Kohavi, 1996)
approach. NBTree is a hybrid algorithm that con-
structs a decision tree (thus with automatic partition-
ing) with Naive Bayes classifiers as leaves. Overall, the
Random Forests (Breiman & Schapire, 2001) classifier
achieves the highest performance among the models
under evaluation.

5. Discussions

The advantage of the Single Adaptive approach is its
simplicity and it can be fully automated. The Com-
bined Adaptive approach is able to achieve better per-
formance, but requires manual work to define mod-
els based on product attributes. Both adaptive ap-
proaches learn online after every customer interaction,
which is an advantage that enables real-time deci-
sioning. Ensemble learning methods such as Random
Forests are robust and perform well, but may require
offline training. An interesting research direction is
to experiment with online versions of these ensemble
learning methods.
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6. Conclusions

In this paper we propose a preference based product
recommendation approach that is able to recommend
across a large number of products. This approach is
based on modeling the customer preferences towards
product features, and combines individual preferences
to form an overall recommendation for the product.
The base model is an adaptive model that is able to
model customer behavior online. We show that the
proposed approach achieves comparable or better per-
formance compared to other methods using a real-life
web recommendation dataset. Therefore it establishes
a favorable approach towards application domains that
scale to thousands of product instances or more and
at the same time meeting real-time learning require-
ments.
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Abstract

With the development of sensing and data
processing techniques, monitoring physical
systems in the field with a sensor network is
becoming a feasible option for many domains.
When analyzing data collected from the sen-
sor network, there typically exist substantial
correlations between various sensor signals.
Employing sensors of multiple types will pro-
duce a greater signal variation, but sensors
will still be sensitive to related aspects of the
measured system, that is to say there are cer-
tain dependencies. In this paper, we focus on
modeling sensors dependencies among sensor
types of a sensor network installed on a Dutch
highway bridge. This sensor network is com-
posed of three types of sensors: strain gauges,
vibration sensors, and temperature sensors.
Through linear regression, convolution, en-
velope and band pass filters, we succeeded
in detecting the dependency between strain
gauges and temperature sensors in the time
domain, and the dependency between strain
gauges and vibration sensors in the frequency
domain. To gain insight into these dependen-
cies, and how the placement and location of
sensors influences them, we further analysed
the obtained models in a secondary analysis
step. The methods presented in this paper
are demonstrated by means of an application
on a highway bridge, but we feel that, due
to their general nature, they equally apply to
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other domains amenable to sensing.

1. Introduction

With the rapidly decreasing prices for sensors, data
gathering hardware and data storage, monitoring
physical systems in the field is becoming a viable op-
tion for many domains. In fields such as civil engi-
neering, windmills and aviation, so-called Structural
Health Monitoring (SHM) systems are becoming pop-
ular to understand the actual workings of the system in
situ, as well as to monitor the system for any develop-
ing faults. More and more, sensor networks consisting
of multiple sensor types are being employed in these
environments, and large quantities of data are being
collected. New methods are required to deal with the
proper analysis and interpretation of such data collec-
tions. In this paper, we consider a case study of such a
multi-sensor network, where non-trivial data process-
ing is required to make sense of the data.

When dealing with multiple sensors measuring a phys-
ical system, each individual sensor will be sensitive to
some aspects of the system, based on the specific char-
acteristics of the type of sensor and on which part of
the system the sensor is placed. This is clearly the
case for sensors of different types (such as vibration
and temperature sensors), but also for identical sen-
sors attached differently to the system. If two sensors
are measuring in each others vicinity, they will likely
show some dependency, but in most cases, this depen-
dency will be non-trivial, depending on the location,
the orientation and the attachment. As an example,
consider an SHM-system employed on an aircraft. In
order to measure stresses on a wing, and potential
metal fatigue on the wing attachment, strain gauges
are fitted to the wing attachment. During high-g-force
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manoeuvres, the strain gauges will measure high val-
ues of strain on the attachment. Other sensors might
be placed at the tip of the wing, to measure vibra-
tions caused by turbulence for example. These vibra-
tion sensors however, will not be sensitive to sustained
bending of the wing, as the sensor simply moves along
with the wing, and is only sensitive to rapid changes
in the location of the wing. As such, strain gauges
are sensitive to different aspects of the dynamics than
vibration sensors, although some overlap exists in the
physical phenomena captured by either type.

In this paper, we provide some examples of modeling
the dependencies between (pairs of) sensors, specifi-
cally where multiple sensor types are involved. We
will demonstrate the methods on data collected at a
Dutch highway bridge within the InfraWatch project
(Knobbe et al., 2010; Vespier et al., 2011; Miao et al.,
2013). The bridge in question is continually being
monitored by a collection of sensors of three differ-
ent types: strain gauges, vibration sensors, and tem-
perature sensors, all sampling at 100 Hz. One of the
main challenges here is to understand the specific fo-
cus of each sensor type and to model any relationships
across types. Having such a model may help, for in-
stance, to remove certain phenomena measured by one
sensor type from the signal of another sensor type.
Specifically, we will consider the effect of temperature
changes on the strain measurements at various loca-
tions on the bridge. As such, we can correct for this
temperature effect.

Modeling dependencies between sensors also helps to
remove redundancies in the data. Being able to in-
fer the measurements of a particular sensor from the
remaining sensor may suggest a smaller, and thus
cheaper monitoring set-up. Finally, any modeling over
the collection of sensors is beneficial for tracking the
health of the bridge over longer periods. Changes in
the value of a single sensor will often indicate transient
effects, such as traffic or weather, but changes in the
models of the bridge data indicate structural changes
to the actual bridge, warranting further investigation.

A further issue we will be investigating is the effect
that location and placement of sensors has on their
usefulness within the network. For example, if we wish
to understand the effect of temperature on strain mea-
surements, it will be relevant to know where and how
these two parameters are being measured. By inves-
tigating the dependencies between all pairs of sensors
from two types (in this case strain and temperature),
we hope to discover practical guidelines for the opti-
mal placement of sensors. In Section 6, we perform a
secondary analysis step based on Subgroup Discovery
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to find key characteristics of sensors in terms of their
type, location, mode of attachment and orientation.

2. Preliminaries

In the InfraWatch project, a sensor network with 145
sensors is employed. These sensors are placed along
three cross-sections of a single span of the bridge. Each
of them is either embedded in the concrete, or attached
to the outside of the deck and girders. To measure
the strain in different directions on the bridge, we uti-
lize sensors of different types: wibration sensors mea-
sure vertical motion of the bridge, and strain sensors
measure horizontal strain caused by deflection of the
bridge. In the latter case, we measure strain along
both the X-axis and Y-axis. To measure the temper-
ature of different parts of the bridge, we also employ
multiple temperature sensors. To formalize this place-
ment, we define each sensor as follows:

Definition 1 (Sensor) A sensor is a tuple
(t,z,y,e,0), where t € {St,Vi,Te} indicates the
sensor type (strain, vibration, and temperature,
respectively), x and y are its coordinates on the
bridge, e € {embed,attach} indicates whether the
sensor is embedded or attached to the concrete, and
o € {X-axis, Y-azis} indicates the orientation of the
sensor.

In the remainder of this paper, we will make sub-
stantial use of linear correlations between two signals.
Specifically, we will use the (Pearsons’s) correlation co-
efficient as a measure for how related two signals are,
modulo a linear transformation between the two. In
many cases, the challenging part is the non-linear op-
erations that will have to be performed to the signals,
in order to make them congruent. What remains is a
simple linear transformation in order to translate the
one scale (for example degrees Celsius) to another (for
example strain in gm/m). Using the correlation coef-
ficient allows us to measure the dependency between
two features in a manner that is independent of the
scale in which a sensor happens to measure.

3. Strain & Temperature

In this section, we study the relationship between two
types of sensor: strain and temperature. The sen-
sor network features a total of 91 strain sensors, 44
of which are embedded, and 47 are attached. Of the
20 temperature sensors, one half is embedded in the
surface of the deck, and the other half is attached to
the underside of the deck.

Fig. 1, the absolute correlation coefficients between
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Figure 1. Correlation matrices for St-Te (left), St-Vi (middle) and Vi-Te (right). The numbers on the axes indicate the
sensor number.The colorbar value stands for the absolute value of correlation coefficients.

strain and temperature vary from 0 to 0.97. For these
sensor pairs with high correlation coefficients, we can
simply employ a linear model that assumes the mea-
sured strain is directly influenced by the temperature
of one of the temperature sensors:

S=a-T+b

In this model, the coefficients a and b translate be-
tween the temperature scale (in Celsius) and the
micro-strain scale (in pm/m). The blue line in Fig.
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Figure 2. The linear (blue) and exponential decay model
(red) between strain and temperature.

2 shows the effect of this model applied to a pair of
strain and temperature sensor time series that are only
moderately related, with a = —3.288 and b = 27.547
obtained through linear regression over a longer pe-
riod of time than displayed here. The correlation co-
efficient for this example is » = 0.776, which indicates
that the selected pair of sensors are moderately cor-
related. However, when considering the time series in
more detail, one can note that there is a dependency
of the strain signal on the temperature measurements,
but this relation is non-trivial: it involves a degree
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of delay: the upward and downward movement of the
signal appear to be shifted by several hours.

The linear model fails to capture the complete effect
of temperature on the strain, because the temperature
sensor does not actually measure the bridge tempera-
ture, but rather the outside temperature. The temper-
ature of the bridge is of course mostly influenced by the
outside temperature, but this influence is spread over
time, and the bridge temperature will follow changes of
outside temperature with a delay. The amount of de-
lay depends on the size and material of the structure,
with larger structures (such as the bridge in question)
being less sensitive to sudden changes of outside tem-
perature. In other words, a large concrete bridge has
a large capacity to store heat, which is mirrored in a
slow response of the strain signal.

In the systems analysis field, systems with a capac-
ity are often modeled as a Linear Time-Invariant sys-
tem (Hespanha, 2009). Time-invariant indicates that
the response of the system does not change over time,
which is a reasonable assumption for a bridge (if subtle
deterioration of the structure is ignored). LTI systems
are linear because their ‘output’ is a linear combination
of the ‘inputs’. In terms of the bridge, the tempera-
ture of the bridge is modeled as a linear combination of
the outside temperature over a certain period of time
(typically the recent temperature history):

Tbridge(t) = Z h(m)T(t - m)
m=0

where Tyriqge(t) is the internal temperature and h is
an impulse response (to be defined below). Note that
this is a special case of convolution, a concept that
has been extensively studied in signal processing and
analysis (Stranneby & Walker, 2004):

o0

y(t) =hxx(t)= Y h(m)z(t—m)

m=—0o0
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Figure 3. Strain and Vibration signal in the time and frequency domain.

Of the many impulse response functions h, which
include for example the well-known moving average
operation, we decide to model the delayed effect of
the outside temperature using the exponential decay
function h.(m) = e~ (for m > 0). In this function,
A is the decay factor, which determines how quickly
the effect of past values reduces with time. Note that
the resulting equation

S =a-he*T+b, where ho(m) =e ™ (1)
is the solution to a linear differential equation that
is known as Newton’s law of cooling, which states that
the change in temperature of the bridge is proportional
to the difference between the temperature of the bridge
and its environment:

dTbridge

dt =T (Tbridge(t) - T(t))

This is a somewhat simplified representation of real-
ity, in that it assumes that the systems consists of
two ‘lumps’, the bridge and the environment, and that
within each lump the distribution of heat is instanta-
neous. Although in reality this is clearly not the case,
it turns out that this model performs fairly well.

For a given pair of sensors and the associated data,
we will have to choose optimal values for a,b and
A. It turns out that A behaves very decently, with
only a single optimum for given a and b, such that
simple optimisation with a hill-climber will produce
the desired result. For Equation 1, we obtain a fit-
ted model for the selected sensor pair shown as the
red line in Fig. 2, which clearly demonstrates that
the exponential decay model has removed the appar-
ent delay in the data. The fitted coefficients were
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a —12.147,b = 30.463, and A = 3 - 107°, with a
correlation coeflicient r = 0.867. Considering every
possible pair of sensors from St and Te, we find that
the correlation coefficients of 47.4% of sensor pairs are
improved by the exponential decay model. Indeed, the
successful modeling of the dependency for a given pair
of sensors still depends on the location and placement
of either sensor. In Section 6 we look into the ques-
tion of finding suitable pairs of sensors in more detail,
when we apply Subgroup Discovery to the modeling of
St-Te sensor pairs.

4. Strain & Vibration

Our sensor network contains 34 vibration sensors, 15
of which are attached to the bridge deck, while the re-
maining 19 sensors are attached to the bridge girders.
As mentioned in Section 2, both vibration and strain
sensors are used to measure the dynamic stresses act-
ing on the bridge. In theory, there should thus be
some degree of correlation. However, we failed to de-
tect a strong linear dependency between any pair. As
illustrated in Fig. 1 (middle), the correlations between
most sensor pairs are quite weak, the highest one for
this data being 0.1557. To demonstrate what types of
modelling can be done for these two types of sensors,
we selected one pair of sensors with a moderate corre-
lation coefficient, as shown in the time domain in Fig.
3 (left). The graphs show that the vibration sensor is
a symmetric signal, while the strain sensor time series
is not. However, the peaks in both occur consistently,
which indicates that they are related. Using a sim-
ple correlation, this effect is hidden by the symmetric
nature of the vibration signal.
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Figure 4. The correlation matrix for St-Vi after applying a
band-pass filter in the frequence domain.

Fig. 3, which features the spectra obtained for the
two signals by means of a Discrete Fourier Transform
(Stranneby & Walker, 2004), shows that despite a lack
of a direct relation in the time domain, the signals are
actually fairly similar in parts of the spectrum, notably
where frequencies above 1 Hz are concerned. Note
the big peak around 2.8 Hz in both spectra. In fact,
what is missing in the vibration spectrum are the lower
frequencies, which correspond to slower bridge move-
ments. In other words, the vibration sensors are not
sensitive to gradual changes in the deflection of the
bridge, as the sensors themselves simply move along
with the bridge. The strain gauges, on the other hand,
are sensitive even to the slowest changes in bridge de-
flection. However, both sensors measure shaking of the
bridge (frequencies above 1 Hz) in a similar fashion.

Based on these observations, an obvious way to relate
St to Viis to focus on a fairly specific range of frequen-
cies. In our experiments, we have applied a band-pass
filter to remove all components of the signal outside
the range 2.0 — 3.2 Hz. The linear model between the
strain and vibration time series then becomes:

BPF2_3‘2<S) =a- BPF2_3,2(V) +b

in which BPF stands for the band-pass filter opera-
tion. After applying the band-pass filter operation to
both St and Vi, the correlation coefficient improves
from 0.10 to 0.94.

The model we achieved through the band-pass filter
operation works well for a small selection of sensor
pairs. In Fig. 4, information is displayed on which
sensor pairs specifically gain from this operation. Note
that some strain gauges correspond well to most of the
vibration sensors (dark columns in the matrix). These
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Figure 5. The dependency between modes and tempera-
ture.

sensors are primarily located on the right side of the
bridge. The few exceptions (St78, St79 and St83) are
located on the girder entirely on the other side of the
bridge. We look into such observations in more detail
in the coming secondary analysis section (Section 6).

5. Vibration & Temperature

As mentioned in the previous section, the vibration
spectrum shows little activity in the range below 1
Hz, which happens to be where all of the temperature
changes occur (for example due to the daily difference
between day and night). For this reason, there are no
significant dependencies between the sensors from Vi
and Te, shown as Fig. 1 on the right. However, the
vibration of the bridge does depend on the tempera-
ture. It is well known that bridges tend to oscillate
at specific frequencies, and that these frequencies are
determined by the stiffness of the structure, which in
turn is influenced by changes in the temperature of
the material. In a simplified model of a span of the
bridge, the natural frequency of the span is computed
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as follows:

1 |k
Ju= 2m \/;
In this equation, m refers to the mass of the bridge
(including the possible load on the bridge), and k is
a stiffness coefficient that depends on several factors
such as material, humidity, corrosion, etc., but also
on temperature. Note that an increasing temperature
leads to a decreasing stiffness k, and hence a decrease
in frequency, such that we expect a negative relation-
ship between Vi and Te sensors.

The effect of temperature on natural frequencies is
widely studied (Song & Dyke, 2006; Xia et al., 2006).
After external excitation, for example traffic or wind,
a bridge can vibrate in different modes (Reynolds &
Pavic, 2001). Each mode stands for one way of vi-
bration, which can be vertical, horizontal, torsional or
more complicated combinations thereof, and there is
one natural frequency corresponding to each. To iden-
tify these modes, we use a peak selection method in the
spectrum of the vibration sensor (Peeters & De Roeck,
2000). As shown in Fig. 3, we can detect several
peaks in the spectrum, each of which is assumed to
correspond to a mode. We then consider each mode
individually, and look for dependencies between the
temperature and the frequency.

In order to consider a substantial range of tempera-
tures, we extracted data from over 45 days, with tem-
peratures between 0 and 12 °C. In order to minimize
the effect of traffic on m, we selected one hour from
each day from 3:00 AM to 4:00 AM. Another motiva-
tion for this time-period is the relative stable temper-
ature of both the environment and the bridge. From
this hour of data, a spectrum was computed, along
with the corresponding modes, as well as the average
temperature during this period. Surprisingly, and con-
trary to many publications (Peeters & De Roeck, 2000;
Xia et al., 2006; Liu & Dewolf, 2007; Xia et al., 2011),
we find that most modes in the lower ranges of the
spectrum (for example the prime one around 2.8 Hz)
are not affected by temperature (see Fig. 5 left), at
least not in the 12 degrees range available to us. The
only mode clearly depending on temperature is around
18.6 Hz, as shown in Fig. 5 right.

6. Analysis of Sensor Properties

As mentioned at the end of Section 3 and 4, we can
accurately model some of the strain signals using the
temperature signals, and correlate some vibration sen-
sors with strain sensors. However, the models we ob-
tained are not universal for every pair of sensors. To
further look into why some sensor pairs work well and
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others not, we analysed them in a secondary analysis
step, where we investigate the influence of various sen-
sor properties such as their location and orientation.
The term secondary analysis refers to the fact that
we are taking the combined set of findings from the
previous analysis (the search for sensor dependencies),
and treating them as a new data mining task, which
is aimed at finding properties of the sensor pairs that
help understand why some pairs are easier to model
than others. The term meta-learning could also apply
to this activity.

Our method of choice for this analysis is Subgroup
Discovery (SD), which is a descriptive pattern min-
ing technique that aims to outline specific subsets of
the data that show a significant deviation of the tar-
get, compared to the entire dataset. Our target in
this case is the quality of the individual models for
sensor pairs (expressed in terms of correlation coeffi-
cient), which makes this a regression task. As qual-
ity measure for subgroups with a regression target, we
use the so-called (standardized) z-score, which essen-
tially measures how many standard deviations a sub-
group is away from the mean of the entire dataset (see
(Pieters et al., 2010) for an overview of quality mea-
sures for regression SD). The software we used to con-
duct these experiment is called Cortana®, which is a
generic toolbox for Subgroup Discovery tasks, includ-
ing the regression setting that is required here (Meeng
& Knobbe, 2011). Any alternative tool for discover-
ing patterns in numeric/nominal data in a regression
setting, such as regression trees, would have worked
equally well.

Table 1 shows the structure of our data obtained after
the initial modeling of sensor pairs. We represent each
sensor pair and their properties, including the correla-
tion of the best model, in one row. In the St-Te model
we have 91-20 = 1820 rows, and 91-34 = 3094 rows for
the St-Vi model. The sensor locations are represented
using x and y-coordinates, but in order to allow the
SD algorithm to also discover more high-level, inter-
pretable properties, we also introduced several inter-
vals in both dimensions (such as girder and deck for
the y-axis). Additionally, we provided the orientation
and type of embedding as nominal attributes.

In our SD run, we search for interesting subgroups with
descriptions consisting of conditions on one or more
attributes. Although very specific descriptions can be
mined, it turns out that fairly simple descriptions are

the most informative, so we mine for subgroups of at

Tt can be downloaded from datamin-
ing.liacs.nl/cortana.html, and is also available as a
plugin for the KNIME package.
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Table 1. Example of the data that was used in the secondary analysis.

STRAIN TEMPERATURE
SENSOR X Y  EMBED. ORIENT. LANE LAYER STRUCT. SENSOR X Y  EMBED. LANE LAYER STRUCT. CORR.
Stl 14 0 ATTACH X-AXIS RIGHT GIRDER GIRDER TEL 13 7 EMBED RIGHT TOP DECK 0.139
STl 14 0 ATTACH X-AXIS RIGHT GIRDER GIRDER TE2 13 5 ATTACH RIGHT BOTTOM DECK 0.024
STl 14 0 ATTACH X-AXIS RIGHT GIRDER GIRDER TE3 9 7 EMBED MIDDLE TOP DECK 0.068
ST2 14 2 ATTACH X-AXIS RIGHT GIRDER GIRDER TEl 13 7 EMBED RIGHT TOP DECK 0.277
ST2 14 2 ATTACH X-AXIS RIGHT GIRDER GIRDER TE2 13 5 ATTACH RIGHT BOTTOM DECK 0.472
Table 2. The d < 2 results for the St-Te models (uo = 0.533).

SUBGROUP DESCRIPTION COVERAGE %  2-SCORE us;

ST VERTICAL = INSIDE DECK & ST HORIZONTAL < 7 11.0 18.2 0.89

ST VERTICAL = INSIDE DECK & ST ORIENTATION = Y-AXiS 9.9 17.8 0.90

ST VERTICAL = INSIDE DECK 16.5 16.1 0.79

ST VERTICAL = INSIDE DECK & TE HORIZONTAL < 9 13.2 15.9 0.82

ST VERTICAL = INSIDE DECK & TE HORIZONTAL > 5 13.2 14.1 0.79

ST VERTICAL = INSIDE DECK & TE EMBEDDING = ATTACH 8.5 12.2 0.81

ST VERTICAL = INSIDE DECK & TE HORIZONTAL < 5 6.6 11.2 0.82

ST VERTICAL = INSIDE DECK & TE EMBEDDING = EMBED 8.2 10.6 0.77

ST EMBEDDING = EMBED 47.3 10.3 0.63

most two conditions (d < 2). The algorithm searches
for high-quality subgroups using a beam search with
beam width w = 100 (Meeng & Knobbe, 2011). A
z-score-ranked list of subgroups is returned, of which
we report the top-ranking results. Note that we filter
the final ranking by removing logical redundant sub-
groups. A minimum subgroup size of 2 was used.

St-Te models The secondary analysis of the strain
and temperature sensors takes the absolute correla-
tion value of each sensor pair as the primary target.
The first 9 subgroups (sets of pairs of St-Te sensors)
are shown in Table 2. The average correlation over
the entire set of pairs is pg = 0.533. The columns
contain the subgroup description, the percentage of
sensor pairs within the subgroup (i.e. the fraction of
the database covered), the z-score, and the average
correlation with the subgroup, respectively.

This table shows 2 subgroups of depth one and 7 sub-
groups of depth two. First, we note that the quality
of the St-Te models seems to rely mostly on proper-
ties of the strain sensors, rather than the temperature
sensors. Apparently, Te sensors provide fairly stable
results, whereas for the St sensors, it really depends on
the location whether they can be use reliably. Specifi-
cally, sensors inside the deck, oriented horizontally on
the left side of the bridge?, appear to work well. Note

2The bridge was under construction during this period,
and was not being use symmetrically.
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that such observations are highly useful for the design
of future sensor networks, as it provides guidelines to
the effective placement of a small collection of sensors.
Although subgroups 4 to 8 provide some information
as to the placement of Te sensors, these subgroups are
not radically different from ‘St vertical = inside deck’,
and have a slightly lower quality (although sometimes
higher ug,).

St-Vi models Table 3 presents the top-9 subgroups
for the strain and vibration models. The results
present a much more balanced picture, with both St
and Vi properties being crucial for a reliable model.
Clearly, the location of sensors at the girders provides
the best results, an observation that is corroborated by
civil engineering experts in the project. Note that ei-
ther side of the bridge is much more useful for St place-
ment, compared to the middle of the bridge. We also
identify several individual strain sensors (Stl, Stll,
St83) located on both sides of the bridge that play a
useful role in many models they feature in. Note that
these selected sensors correspond to the three darkest
columns in the correlation matrix in Fig. 1 (right).

7. Conclusion and future work

We have demonstrated the use of a number of key
data mining and signal processing techniques to model
dependencies among multiple sensor types. We have
built a linear model to correlate strain and tempera-
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Table 3. The d < 2 results for the St-Vi models (o = 0.139).

COVERAGE %

SUBGROUP DESCRIPTION z-SCORE s,

ST VERTICAL = GIRDER 17.4 31.3 0.36
V1 VERTICAL = GIRDER & ST VERTICAL= GIRDER 10.2 28.0 0.40
ST VERTICAL = GIRDER & ST HORIZONTAL = RIGHT 6.5 24.8 0.43
ST EMBEDDING = ATTACH & ST ORIENTATION = X-AXIS 38.0 17.7 0.21
ST VERTICAL = GIRDER & VI VERTICAL = UNDER DECK 7.2 15.3 0.31
SENSOR = ST1 & VI VERTICAL = GIRDER 0.6 12.8 0.62
ST VERTICAL = GIRDER & ST HORIZONTAL = LEFT 6.5 12.2 0.28
SENSOR = ST83 & VI VERTICAL = GIRDER 0.6 11.4 0.56
SENSOR = ST11 & VI HORIZONTAL = RIGHT 0.4 11.4 0.68

ture readings, and improved this model through con-
volution with an exponential response function. In
the frequency domain, we used band-pass filters to
detect the correlated spectra between strain and vi-
bration sensor time series. For modeling dependen-
cies between vibration and temperature sensor time
series, the modes of the spectrum were identified. We
note that most low frequency modes are affected lit-
tle by temperature changes. Finally, we conducted
secondary analysis of the models obtained in Section 3
and 4, and extracted subgroups to explain the effects of
sensor placement. The extracted rules can be used as
guidelines for designing more (cost-)effective networks
on future Structural Health Monitoring installations.
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Abstract

In human and computer vision, the analysis
of visual texture is of pivotal relevance for
object recognition and scene understanding.
The analysis of texture defined by both in-
tensity and colour variations contributes to
the automatic classification in satellite im-
ages, medical images, or food processing. Bi-
ologically motivated studies have proposed
Independent Component Analysis (ICA) as
a model for the analysis of colour texture in
human vision. To aim of this paper is to de-
termine the effectiveness of ICA for colour
texture analysis in computer vision. The ef-
fectiveness of ICA on the segmentation of
paintings is assessed in unsupervised and su-
pervised settings. The results are encourag-
ing and suggest ICA to be a suitable basis for
colour texture analysis.

1. Introduction

Both in biological and artificial vision systems, visual
texture provides an important cue for the recognition
of objects and scenes (Tuceryan & Jain, 1993). Vi-
sual texture refers to the visual appearance of, for in-
stance, textile or surfaces. Texture analysis enables
the measurement and quantification of visual texture.
Two common applications of texture analysis are tex-
ture classification and texture segmentation. In tex-
ture classification, images or image patches are clas-
sified into useful classes. For instance, the texture of

Appearing in Proceedings of BENELEARN 2013. Copy-
right 2013 by the author(s)/owner(s).
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pieces of fruit may be classified according to the type
of fruit. In texture segmentation images are subdi-
vided into similarly-textured regions. For instance,
texture segmentation can be used to automatically
subdivide satellite images into different regions. Al-
though texture is traditionally analysed by consider-
ing the spatial variation in pixel intensity (grey scale
values) (Tuceryan & Jain, 1993), the application exam-
ples given underline the fact that most natural textures
are defined in terms of both intensity and colour (see,
e.g., (Cheng et al., 2001)). Such textures are called
colour textures (Drimbarean & Whelan, 2001). In re-
cent years, colour texture analysis became an active
research field. The main challenge in this field is to
find an effective way to integrate intensity and colour
cues in colour texture analysis (Fernandez & Vanrell,
2012; Wang et al., 2011).

The current study is part of a research project that
alms to support painting conservators in their assess-
ments of the ageing of paints. Paintings consist of dif-
ferent types of pigment applied to a canvas. A high-
resolution digital reproduction of a painting can be
considered to form a mixture of colour texture compo-
nents, corresponding to the various pigments, brush
strokes, and the canvas. From a signal- or image-
processing perspective, the problem of recovering the
components is a so-called blind source separation prob-
lem (Kleinsteuber & Shen, 2012). A widely used algo-
rithm for blind source separation is Independent Com-
ponent Analysis (ICA) (Hyvérinen & Oja, 2000). ICA
is concerned with finding an unmixing matrix by which
a mixed signal can be decomposed into its source sig-
nals.

Wachtler, Lee, & Sejnowski (2001) showed that ICA is
a biologically plausible method for the analysis of nat-
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ural scenes and that ICA, when applied to colour im-
ages, yields integrated representations of intensity and
colour information. Such ICA representations may
be invoked as filter banks for colour texture analy-
sis (Jenssen & Eltoft, 2003; Chen et al., 2006). While
filter banks for image (or texture) segmentation com-
monly consist of pre-defined Gabor or Wavelet filters
(Ni et al., 2013; Fan, 2012; Jain & Farrokhnia, 1991;
Wang et al., 2011). ICA-based filter banks have been
shown to outperform Gabor filters (Chen et al., 2006).

To aim of this paper is to determine the effectiveness
of ICA for colour texture analysis in both an unsu-
pervised and a supervised setting. Unsupervised ICA-
based colour texture segmentation has been studied
before (Cheng et al., 2003), but the authors report only
qualitative results. To the best of our knowledge, we
are the first to study ICA-based colour texture analysis
in a supervised and quantitative setting.

The outline of the remainder of the papers is as fol-
lows; in Section 2 the ICA method is described. Then,
in Section 3 the experimental setup is described, de-
tailing the dataset, experiments and evaluation proce-
dure. The experimental results are presented in Sec-
tion 4 and the discussion of the results and conclusions
are given in Section 5.

2. Independent Component Analysis
for colour texture analysis

Our method for performing Independent Component
Analysis to colour texture analysis consists of two
steps: (1) finding the independent components and
treat them as filters, and (2) convolving the ICA filters
with an image. In this work the fixed-point algorithm
FastICA by Hyvérinen and Oja (2000) is used for all
ICA operations.

ICA is a variant of factor analysis that directly finds
the independent components of any non-Gaussian dis-
tribution (Hyvérinen & Oja, 1997).

2.1. Finding the independent components

The underlying assumption of ICA is that a collec-
tion of observed signals or vectors x consist of sta-
tistically independent components (Hyvérinen & Oja,
1997). These components are denoted by s, and can
be found by means of a linear transformation of the
observations x with a weight matrix W,

s = Wx. (1)

Although the weight matrix W and the independent
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components s are unknown, the mixing model can be
rewritten as

x = As, (2)
where A represents the mixing matrix. It is possible
to estimate both the mixing matrix A and the com-
ponents s from the observed signals x using an unsu-
pervised learning procedure. A is obtained such that
its (pseudo)inverse W multiplied by x; is an estimate
of s;.

In this work ICA is applied to obtain a filter bank g;,
consisting of size D x D x 3 filters. A weight matrix
W is learned for each image I; by applying ICA to a
collection of randomly sampled patches of size D x D X
3. Each collection consists of a fixed amount of 50, 000
image patches, sampled from its respective image I;.

The resulting filter bank is constructed by reshaping
each row of weight matrix W into a D x D x 3 filter.

2.2. Convolving the ICA filters with an image

The obtained filter banks are applied by convolving
each image I; with its respective filter bank g; as fol-
lows;

3)

The outcome of the convolution can be summed across
all dimensions in order to calculate the energy distri-
bution as follows;

Gi(l',y,Z) = Ii(l',y,2’> Y g;-

N M P

ZZZGi(:ﬂ,y,z).

y=1lzx=12=1

fi (4)

The energy value describes how strong the interaction
of a filter is with the image at a given location. The
energy distribution for two similar areas is expected
to be more similar than the energy distribution of two
dissimilar areas. The resulting feature matrix f; con-
sists of a M N x |g;| matrix, where each row describes
the energy distribution across colour channels for a
given pixel.

The size of the filter bank depends on how many inde-
pendent components are chosen. For our experiments
we varied the number of independent components de-
pending on the colour space and for comparability to
other results.

3. Experimental setup

The experimental evaluation of our ICA-based colour
texture analysis method is performed by segmenting a
painting into paints and primed-canvas regions. Both
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Figure 1. Daubigny’s Garden by Van Gogh (1890).

an unsupervised and a supervised setting will be ex-
amined.

3.1. Dataset

The dataset is extracted from a digital reproduction
of a painting by Van Gogh: Daubigny’s Garden, a
50.7 x 50.7 cm painting that was created in 1890. Fig-
ure 1 shows a reproduction of Daubigny’s Garden. The
key characteristic of this painting is that the primed-
canvas is visible in some areas of the painting. Ground
truth on these primed-canvas locations is available in
the form of an images-sized mask consisting of a bi-
nary label for each pixel of the 8176 x 6132 image of
Daubigny’s Garden. The dataset consists of a random
selection of 50,000 D x D patches (D = 8).

The images in I; consist of two typical areas of size
1004 x 750, examples shown in Figure 2, cropped from
the high-resolution image of Daubigny’s Garden.

3.2. Unsupervised setting

We employ two unsupervised methods: k-means clus-
tering (Cheng et al., 2003) and graph-based clustering
(Felzenszwalb & Huttenlocher, 2004), see also (Peng
et al., 2013) .

We apply k-means clustering to the energy distribu-
tion f; obtained by convolving an image with the filter
bank. The value of k determines the extent of the seg-
mented regions (large for low values of k and small for
high values of k). Segmenting an image in a few large
regions will often result in a high recall, due to many
of the ground layer pixels being encapsulated inside
the same region. However, large regions are also much
more coarse, and will thus contain many unwanted pix-
els, resulting in a low precision. The benefit of having
a few large regions is that it is trivial to manually se-
lect the best regions. In our experiments, k& was set to
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5, 10, and 100.

The graph-based clustering method has three ad-
justable parameters; o, t and min. The first param-
eter o is used to smooth the image using a Gaussian
filter before segmenting it. The second parameter ¢
which is used to determine the scale of observation, a
higher value of ¢ will result in larger components. The
third parameter min is used during post-processing to
enforce a minimum region size, preventing too many
small regions. All experiments were performed with
the recommended values of 0.8 for ¢ and 20 for min.
The value of ¢ is varied between the recommended
value of 500 and the, in preliminary experiments de-
termined to be appropriate, value of 350.

3.3. Supervised setting

Supervised algorithms make use of training data, or
labeled data in order to learn a model that describes
the data and allows for predictions to be made about
unseen samples. A supervised classifier operates by
learning a mapping, for each instance, of the features
to the provided label. For the experiments conducted
the instances are represented by single pixels. For each
instance the ground-truth is noted by a binary label,
indicating whether or not it is part of the ground layer.
The features consist of the energy distribution f;.

Ideally a classifier can be trained on a subset of the
dataset and can be used to accurately segment an
entire image. Several supervised classifiers are evalu-
ated using a standard k-fold cross validation approach
which divides the data in a training and test set.

3.3.1. CLASSIFIERS

Three classifiers were used in order to tackle the prob-
lem at hand, namely the MATLAB implementations
of the k-nearest neighbour (k-NN), naive Bayes, and
RUSBoost classifiers.

k-NN assigns the unseen samples the (majority) label
of the k nearest neighbouring samples in the training
set (Hastie et al., 2003). For all experiments described
in this paper the value of k£ was kept at 1.

Naive Bayes is a probabilistic classifier that assigns
labels to unseen sample by using Bayes rule (Hastie
et al., 2003).

RUSBoost is an ensemble learner that employs a weak
learner, a tree, and is particularly well-suited for
dealing with class imbalance (Seiffert et al., 2010).
RUSBoost combines the AdaBoost boosting proce-
dure with random under-sampling in order to over-
come class imbalance, results are obtained using 10,
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(b)

Figure 2. Image regions I, (a) and I, (b) extracted from Daubigny’s Garden

50 and 100 learners.

3.3.2. EVALUATION

The evaluation of our colour texture analysis method is
split into an evaluation procedure for the unsupervised
setting and one for the supervised setting.

Unsupervised setting. The unsupervised setting may
yield more than two different regions. For instance,
k-means classifier results in a segmentation into & dif-
ferent regions, although our task requires only a binary
segmentation into canvas and non-canvas regions. To
deal with this issue, we include only a subset of the
k regions, namely those that contribute to the overall
performance. A region contributes to the performance
when the number of true positives for a region (ry,)
is greater than the number of false positives for that
region (ry,) multiplied by e. As such the solution to
finding the best combination of all regions 7;, rpest be-
comes

Tbest = {Tlo < (rtp —Tfp* 6)} (5)
The value of ¢ was optimised in preliminary experi-
ments yielding a value of 0.23.

Supervised setting. Two commonly used measures for
evaluating the performance of classification systems in
a supervised setting are precision and recall, which
are also used to evaluate segmentation performance
(Martin et al., 2004). Precision is a measure of the
correctness of the classification. Fewer mistakes lead to
a higher precision. Recall is a measure of completeness.
The precision of a generated segmentation is calculated
by dividing the number of pixels correctly classified as
ground layer (true positives) by the total number of
pixels classified as ground layer (true positive + false
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positive), precision = tpfffp. Recall is calculated by

dividing the true positives by the true positives and the
number of ground layer pixels that were not classified

as such (false negatives), recall = tpfffn.

As a joint measure of precision and recall, we use the
F measure, which is the (harmonic) mean of precision
and recall: F = 2 - (precision - recall)/(precision +
recall).

4. Results

We start the presentation of results by showing an ex-
ample of the filter bank obtained by applying ICA to
our dataset. Figure 3 is obtained by reshaping each
row of matrix W into a n-dimensional filter (where
n denotes the number of colour channels). Evidently,
the filters capture spatial and colour information from
the dataset.

4.1. Unsupervised results

The results for the unsupervised experiments are pre-
sented in Tables 1 and 2, for Figures 2(a) and 2(b),
respectively. The features that served as input for the
unsupervised experiments were obtained using a filter
bank of 64 filters, learned from RGB patches. For the
initial experiments we have chosen an under-complete
basis of 64 rather than 192 independent components
in order to facilitate a fair comparison with the results
obtained on grey scale images.

For the k-means algorithm a larger value of k results
in a higher F-score and precision. In the case of I, the
recall does not change much when changing the value
of k. While for I, smaller values of k give a better
result. A possible explanation for this can be found in
the difference between the image regions. The perfor-



Colour-texture analysis of paintings using ICA filter banks

.

it

L

Fd 4

RN
<
XALd' B

.

=
T F
o

{o- g

x
ol

=
L

e ¥
| —-—

-
ok d

et gl WL
b

C A= 2

™ ull 26 I T
B Ea by
-

~

r .y
|

3

I

L
-

e

ik

1l

-1
'

Figure 3. Example of ICA filter bank obtained for D = 8.

Table 1. Results of unsupervised algorithms on image I,

Method ‘ Setting H F-score | precision | recall
k=5 .309 .230 .469
k-means k=10 315 .236 A74
k=100 .329 .254 .466
araph-based t =350 .376 .301 .486
t =500 .349 .303 413

mance of the graph-based algorithm improves with the
lower t value. While the performance with the recom-
mended value (¢ = 500) is on par with k-means (with
k = 100), the lower value (¢t = 350) results in a better
segmentation.

In Figure 4(a) the grey-scale result of the segmen-
tation using k-means with £ = 100 is shown, which
at first glance appears to be more complex than the
colour result of the graph-based algorithm shown in
Figure 4(b). However, every region in the output of
the graph-based algorithm has a randomly-assigned la-
bel, which means that identical sections of the image
in different locations will be labeled differently. This
is not the case for the k-means algorithm that labels
identical sections in a consistent way.
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Table 2. Results of unsupervised algorithms on image I,

Method | Setting || F-score | precision | recall
k=5 .390 275 677
k-means k=10 393 .280 .660
k=100 423 .330 .600
graph-based t = 350 439 .308 761
t =500 .398 .284 .664

Figure 4. Segmentation result of Figure 2(a), (a) is the out-
come of k-means with & = 100, (b) is the outcome of
the graph-based algorithm. Each section is indicated by
a unique colour.

4.2. Supervised results

The results for the supervised experiments are pre-
sented in Table 3 and 4, for Figures 2(a) and 2(b),
respectively. As with the results presented in Sec-
tion 4.1 the results shown in Table 3 and Table 4 are
the result of convolutions with filters obtained from the
64 independent components learned from RGB image
patches.

The performance of the first classifier, RUSBoost, is
about the same for both images. Increasing the num-
ber of learners, the main RUSBoost parameter, results
in a lower recall, indicating that upscaling the number
of of learners will eventually result in lower perfor-
mance. Similarly to RUSBoost the height of the F-
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Table 3. Results of supervised classifiers on image I,

Classifier H F-score \ precision \ recall
RUSBoost(10) .297 187 723
RUSBoost(50) .302 193 702
RUSBOOST(100) .305 195 701
Naive Bayes 281 74 .730
1-NN .556 .555 .557

Table 4. Results of supervised classifiers on image I

Classifier H F-score \ precision \ recall
RUSBoost(10) 408 .288 .703
RUSBoost(50) 419 .308 .652
RUSBoost(100) 419 315 .628
Naive Bayes 378 .251 .766
1-NN .532 .533 .531

score for Naive Bayes stems largely from the high re-
call, with the precision being very low. Indicating nei-
ther classifier is able to accurately distinguish between
the different classes and thus assigns the ground-layer
label to too large regions.

The precision and recall of the k-NN classifier are very
similar, resulting in the highest F-score amongst all
classifiers considered. While the recall is lower com-
pared to the other classifiers the higher precision indi-
cates that the k-NN classifier is capable of distinguish-
ing between the majority of the ground-layer pixels
and the rest of the painting.

5. Discussion

While the presented results are encouraging we feel
that two points are not adequately dealt with, which
we address by presenting a selection of preliminary re-
sults of our ongoing experiments. The first point con-
cerns the influence of the type of image on the perfor-
mance. In our current investigations we employ image
regions, such as I, shown in Figure 5. This image has
a stronger distinction between the primed-canvas and
paint layers than images I, and I.

The second point is the impact of type of filter bank,
colour spaces, and number of features, on segmenta-
tion performance. In our studies we focus on new filter
banks, such as Log-Gabor filters (Field, 1987), addi-
tional colour spaces (e.g., grey-scale and CIELAB),
and dimensionality reduction (using PCA).

To provide an impression of how these variations af-
fect the segmentation performance, Table 5 shows the
results obtained with the k-NN classifier. The results
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Figure 5. Image region I. extracted from Daubigny’s Gar-
den

Table 5. F-scores of the preliminary supervised experi-
ments. Pure refers to results without any PCA prepro-
cessing, PCA(10) are results obtained on the 10 remaining
features after PCA.

Filters Colour space  I; || Pure | PCA(10)
a || .478 436
Grey b 499 458
¢ .635 .612
a | .556 .538
ICA RGB b .532 .b62
c .630 .592
a || .528 519
LAB b .565 .510
¢ .646 .638
a .076 432
Grey b 611 .465
¢ .651 .595
Log-Gabor a || 572 | 595
LAB b 617 465
c .652 .596

on image I. are much better than those on the other
two image regions. We suspect that this is due to the
greater distinction between the layers present in this
image, caused by the increased thickness of the paints
applied in this area, completely masking the underly-
ing canvas. The Log-Gabor filters generally perform
better than he ICA filters to a degree that depends on
the settings. Dimensionality reduction is detrimental
for the Log-Gabor filters, but not for ICA.

These preliminary results hint at directions for future
study.
6. Conclusion

Our experiments show that ICA in a supervised set-
ting yields better results than in an unsupervised set-
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ting. This finding is not surprising, because using the
ground truth for modeling textural differences yields a
stronger model. More importantly, the k-NN perfor-
mance obtained with ICA is reasonable and results ob-
tained when analysing colour texture outperform those
obtained on grey-scale texture.

While Log-Gabor filters show better results in the set-
ting without PCA, with PCA the ICA filters outper-
form the Log-Gabor filters. Which is notable as PCA
drastically reduces the amount of time required by the
classifier. As we extend the method to the entire paint-
ing, the size of the dataset increases by a factor of
40, which would put the required time well over what
would be feasible for any practical application. Fur-
thermore, there is no difference between the grey scale
and colour Log-Gabor settings, which implies that the
Log-Gabor method does not efficiently incorporate the
additional chromatic information.

Although we have obtained a reasonable performance
on a colour texture analysis task using an ICA filter
bank, there are two points of concern. First, it is un-
clear to what extent the complexity of the task influ-
ences the performance. A comparable experiment on
a painting with a less fine-grained distinction between
layers would help in answering this question. Second,
the binary labeling of the training data might not have
been detailed enough for the classifiers to learn a clear
distinction. Further experiments are required to de-
termine whether a richer labeling of the training data
would improve performance.

Notwithstanding these concerns, our results are en-
couraging and suggest ICA to be a suitable basis
for colour texture analysis. Future research will fo-
cus on exploring ways to improve classification per-
formance by experimenting with conditional random
fields, other colour spaces and an extended dataset.
We expect that incorporating an interactive user feed-
back model will improve performance as well as be a
practical solution to obtain labeled training data with
relatively little effort.
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In a recent work (Azzopardi & Petkov, 2013), we pro-
posed a trainable features approach to visual pattern
recognition. It is called COSFIRE, which stands for
Combination of Shifted Filter Responses.

A COSFIRE operator is automatically configured by a
specified pattern of interest, referred to as a prototype,
and is then able to detect the same and similar pat-
terns in other images. The configuration comprises the
determination of the orientations of dominant contour
parts and their mutual spatial arrangement.

The output of a COSFIRE operator is computed as
the weighted geometric mean of simpler filter responses
(e.g. Gabor filters), the properties of which are deter-
mined in the configuration stage. COSFIRE operators
also achieve tolerance to rotation, scale and reflection.

We demonstrated the effectiveness of the proposed fil-
ters in three applications, Fig. 1: the detection of vas-
cular bifurcations in segmented retinal images (DRIVE
data set: recall of 97.88% at precision of 96.94%),
the recognition of isolated handwritten digits (MNIST
data set: 99.48% correct classification), and the detec-
tion and recognition of traffic signs in complex scenes
(100% recall and 100% precision).

The area of support of a COSFIRE operator is adap-
tive as it is composed of the support of a number of
orientation-selective filters whose relative geometrical
arrangement is learned from a given prototype pat-
tern. In contrast, the area of support of other opera-
tors, such as SIFT, is typically a square window, the
size of which is related to the appropriate scale of the
concerned pattern. The presence of noise around a
pattern of interest has little or no affect on the output
of a COSFIRE operator. Other operators may, how-
ever, result in a descriptor that may differ substantially
from the descriptor of the same but noiseless pattern.

The proposed COSFIRE operators share similar prop-

(b)
Figure 1. COSFIRE operators are effectively applied to
three applications: (a) detection of vascular bifurcations in

segmented retinal images, (b) recognition of handwritten
digits and (c) spotting of traffic signs in complex scenes.

erties with some shape-selective neurons in visual cor-
tex (Pasupathy & Connor, 1999), which provided in-
spiration for this work. They are versatile detectors,
conceptually simple, easy to implement and are highly
effective in practical computer vision applications!.

The COSFIRE approach to feature definition contains
an interesting aspect from a machine learning point
of view. In traditional machine learning the features
to be used are typically predefined and are used to
derive other features as (linear) combinations of the
original ones with techniques, such as PCA and ICA.
With the proposed approach, however, the appropriate
prototype features are learned in the configuration of
the corresponding COSFIRE operators.
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When dealing with large amounts of data measured
from complex time-evolving systems, interactive time
series visualization is an effective way to perform ex-
ploratory analysis and form an intuition of the sys-
tem’s behavior. Indeed, the human ability to process
visual information helps to identify structure and pat-
terns and permits to exploit prior knowledge when ap-
plying machine learning and data mining algorithms.

The main challenge when visualizing large time series
is to maintain interactivity while allowing the user to
quickly zoom in and retrieve detailed portions of the
data. Moreover, since the data is plotted in a view-
port with a pixel width typically smaller than then
the number of points in the time series, some sort of
approximation of the original data needs to be per-
formed. The best approximation for this task is the
one with the best trade-off between compression ra-
tio and ability to preserve the important perceptual
features in the data.

The literature contains many examples of approxi-
mation algorithms for time series (Fu, 2011) from
frequency-domain methods, such as DFT and the
DWT, to time-domain methods such as PAA and
APCA. These are however focused on minimizing the
Fuclidean distance between the original data and the
reduced one. There are few algorithms which actually
take care of preserving the perceptual features of the
original data. Douglas-Peucker (Hao & et al, 2011),
PIP (Son & Anh, Oct) and Important Extrema (Fink
& Gandhi, 2011) are the most widely cited. However,
we show that, while at low compression ratios they
model the data pretty well, their Ly error becomes
consistent at high compression ratios.
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Considering these limitations, we claim that there is
not a single existent technique which behaves well
under the interactive visualization requirements de-
picted above. A good compromise would result from
a smart combination of two or more approximations
techniques.

We propose a method to select a data-adaptive hybrid
approximation obtained by composing diverse tech-
niques. In order to evaluate the reliability of our
method, we also define a quality measure for the ap-
proximation which keeps into account both the L2 er-
ror and the capability of preserving important percep-
tual features. We evaluate our method over 3 months
of sensor data (around 500 millions measurements) col-
lected by a sensor network installed on the Hollandse
Brug, in the context of the InfraWatch project!.

References

Fink, E., & Gandhi, H. S. (2011). Compression of time
series by extracting major extrema. J. Fxp. Theor.
Artif. Intell., 28, 255-270.

Fu, T.-C. (2011). A review on time series data mining.
Engineering Applications of Artificial Intelligence,
24, 164 — 181.

Hao, M. C., & et al (2011). A visual analytics approach
for peak-preserving prediction of large seasonal time
series. Computer Graphics Forum, 30, 691-700.

Son, N. T., & Anh, D. T. (Oct.). An improvement of
pip for time series dimensionality reduction and its
index structure. 47-54.

"http:/ /www.infrawatch.com



Asymmetry in Point Set Dissimilarities

Veronika Cheplygina
David M.J. Tax
Marco Loog

V.CHEPLYGINAQTUDELFT.NL
D.M.J. TAXQTUDELFT.NL
M.LOOGQTUDELFT.NL

Pattern Recognition Laboratory, Delft University of Technology, The Netherlands

Keywords: multiple instance learning, dissimilarity representation, non-metric distances

In supervised learning, an object is characterized by a
vector of features which aim to distinguish between ob-
jects of different classes. In some problems, it may not
be straightforward to define what the features should
be. This is often the case for complex objects such as
graphs, where compressing such objects into a single
feature vector representation may increase class over-
lap.

In multiple instance learing (MIL), the complex ob-
jects are called bags of instances. A bag is a col-
lection of feature vectors, or a point set in a m-
dimensional space B = {x;|i = 1,..,|B|} C R™.
Only bags are labeled Y (B) € {+1, —1}, although hid-
den instance labels y(x) € {+1,—1} and a mapping
Y(B) = f({y(x)}) are often assumed. In particular,
positive or so-called concept instances are assumed to
be most important for determining Y (B). This learn-
ing setting has originated in drug activity prediction,
but has also been applied to classification of images,
documents, audio recordings and so forth.

A way of learning with complex objects is to learn
from distances or dissimilarities, i.e., for MIL by defin-
ing a distance measure between bags. Such dissim-
ilarities can be used with the nearest neighbor rule
(assigning the object to the class of its closest neigh-
bors), or more generally, as a feature space, where
each feature is a dissimilarity to a set of prototypes
R(Pekalska & Duin, 2005). In the dissimilarity space
(DS) each point set B is represented as a vector
d(B,R) = [d(B, Ry),...d(B, Rg|)]. In this space, any
supervised learner can be used.

Distance measures on complex objects often display
non-metric properties, such as asymmetry: d(B, B') #
d(B’, B). Consider the point sets in Fig.1. The met-
ric Hausdorff distance is defined as the overall maxi-
mum of the minimum instance distances {d(x,x’)|x €
B,x’ € B’} between the two sets. However, we could
also measure the minimum, average, etc. leading to
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possibly non-metric distances. This deteriorates the
performance of the nearest neighbor rule, but in the
DS, such dissimilarities may be more informative than
their metric counterparts.

e

Figure 1. Minimum instance distances between two bags.

In our work(Cheplygina et al., 2012), we show that
in some MIL problems, not both directions d;,(B —
R) and dfrom(B < R) are equally informative. In
particular, when R is positive, it is often better to use
dfrom (B < R) because this ensures that the concept
instances in R influence the dissimilarity value, leading
to different values for positive and negative bags. On
the other hand, with dy,(B — R) there is a risk that
the concept instances in R are disregarded, therefore
introducing unnecessary class overlap. In such cases
it is not advisable to symmetrize the dissimilarity, but
to use the asymmetric versions instead.
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We target the problem of accuracy and robustness in
causal inference from finite data sets. Our idea is
to combine the inherent robustness of Bayesian ap-
proaches to causal structure discovery, such as GES,
with the theoretical strength and clarity of constraint-
based methods such as IC and PC/FCI. We obtain
probability estimates on the input statements in a
constraint-based procedure, which are then processed
in decreasing order of reliability.

Interactions between real-world variables are often
modeled in the form of a causal DAG Go. A directed
path from A to B in G¢ indicates a causal relation
A = B in the system. The causal Markov and faith-
fulness assumptions link the structure of the graph G
to observed probabilistic in/dependencies, which forms
the basis behind existing causal discovery procedures.

Method

We break up this inference process into a series of mod-
ular steps on basic logical causal statements of the
form L: (Z= X)V(Z=Y),and L : Z # X. Subse-
quent statements follow from deduction on the causal
properties transitivity and acyclicity.

We obtain probability estimates on logical causal
statements by summing the normalized posteriors of
all structures G that entail L through d-separation:

p(LID) o Y p(DI|G)p(G).

ge(L)

Structures over different (small) subsets of variables
X C V can already suffice to derive a specific L. This
is used in an efficient search strategy over increasing
subsets of nodes, where it suffices to keep track of only
the mazimum probabilities obtained so far.

For the likelihood estimates p(D|G) on possible DAG
structures we employ the well-known Bayesian Dirich-
let (BD) metric.
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We still need to account for the fact that the minimal
DAG over subset X C V may be unfaithful (uUDAG)
to the underlying structure. This leads to a modified
inference rule, where d-separation remains valid, but
the identifiable dependencies are restricted. From this
we build a mapping from (possibly unfaithful) uDAGs
G to wvalid logical causal statements L.

Implementation and results

Tests show that a basic implementation of the resulting
Bayesian Constraint-based Causal Discovery (BCCD)
algorithm already outperforms established procedures
such as FCI and Conservative PC. It can also indicate
which causal decisions in the output have high relia-
bility and which do not.

Accuracy of causal decisions
°
S
3
®

. . . . .
0.1 02 03 0.4 05 06
Decision parameter (BCCD / cFCI)

Figure 1. Tunable accuracy of causal decisions in BCCD

The approach is easily adapted into a powerful new
independence test that actually increases in power for
larger conditioning sets. Future extension include scor-
ing MAGs, and allowing for continuous/mixed data.
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Identifying elements that behave differently from the
norm in a dataset is a task of paramount importance.
Most data mining research in this direction focuses on
detecting outliers. In Local Pattern Mining, however,
we are not just looking for any deviating record or
set of records in the data. Instead, we are looking
for deviating subgroups: coherent subsets that can be
described in terms of a few conditions on attributes of
the data. The existence of such descriptions makes the
resulting deviating subgroups more actionable.

‘Behaving differently from the norm’ can be defined in
many ways. Traditionally such exceptionality is mea-
sured in terms of frequency (Frequent Itemset Mining),
or in terms of a deviating distribution of one desig-
nated target attribute (Subgroup Discovery). These
concepts do not encompass all forms of deviation we
may be interested in. To accomodate a more gen-
eral form of interestingness, we developed the Excep-
tional Model Mining framework (Leman et al., 2008;
Duivesteijn et al., 2010; Duivesteijn et al., 2012).

The first step of the EMM framework (see Figure 1)
is partitioning the attributes in two: one set to define
subgroups on (the descriptors), and one set to evaluate
the subgroups on (the targets). Then a model class is
selected over the targets, and a quality measure over
this model class is designed. Finally, the already exist-
ing Subgroup Discovery methodology is used to scan
the descriptor space for subgroups that perform well
according to the quality measure.

target concept
object description

Gl a9

Ue"ng

Subgroup Discovery

Figure 1. The Exceptional Model Mining Framework
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The model class represents interplay between the tar-
gets, and the quality measure gauges the exception-
ality of model parameters. For instance, we can find
subgroups for which two targets are unusually corre-
lated (Leman et al., 2008), subgroups where a classifier
performs unusually (Leman et al., 2008), subgroups
where a Bayesian network on several nominal targets
has a deviating structure (Duivesteijn et al., 2010),
and subgroups where a regression model has an excep-
tional parameter vector (Duivesteijn et al., 2012).

Using EMM instances, we have found subgroups con-
cerning meteorological conditions coinciding with food
chain displacement, subgroups defying the economi-
cal law of demand, subgroups showcasing the damp-
ening effect of collective bargaining on the distribu-
tion of salaries, etcetera. Subgroup significance is
tested against a Distribution of False Discoveries, and
with the regression model class some subgroups can be
pruned without computing the parameter vector.
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Proteomics is the large-scale study of proteins, and the-art “Keil” rules set. CP-DT was learned on a ho-
a typical problem is to identify an unknown protein mogeneous dataset retrieved from all 681 193 examples
through mass spectrometry. The protein is cleaved in PRIDE!. The model is evaluated on three indepen-
by an enzyme and these peptides are then fed to a  dent datasets: iPRG (9694 examples), CPTAC (23 842
mass spectrometer. Afterwards the resulting spectra  examples) and MS-Lims (26 079 examples). CP-DT

are compared to in-silico spectra to allow for an iden- achieves AUROC scores of 84% to 90%, significantly
tification of the unknown peptides and thus of the un- outperforming the Keil rules set with an average im-
known protein. Trypsin is the most used enzyme to provement in AUROC of 17.9%. In a final step, we
convert proteins into peptides as it has a high sub- use our model to create a database of peptides by ap-
strate specificity: it cuts exclusively after an arginine plying Naive Bayes, i.e., the probability of cleavage is
and a lysine residue in the protein’s sequence. the product of the start position’s cleavage prediction,

the end position’s cleavage prediction and no cleavage
in the middle. This database is compared to typically
used databases where each peptide has at most one
miscleavage. Here we achieve an AUROC of 93%, out-
performing existing techniques with an improvement
of 10.0%, which shows a compression of the tryptic
search space with respect to traditional databases. We
therefore conclude that our trypsin cleavage predictor
outperforms the state-of-the-art model.

In our algorithm we propose CP-DT, which is based
on a decision tree ensemble and is capable of predict-
ing trypsin cleavage based on the primary structure of
a protein and a possible cut position in the sequence.
We allow a number of tests on the amino acids type
and/or their properties within a window around the
possible cut position, e.g. “Is there an amino acid with
neutral charge two positions after the cut position?”
or “Is there a proline within distance one of the cut
position?” We learn a decision tree ensemble where
each tree is generated by using a random selection of Acknowledgments
tests, and the actual prediction is generated by averag-
ing the predicted values of the trees in the forest. The
decision tree ensemble is learned by our in-house MIPS
framework, a highly-generic, template-based C++ data
mining tool, capable of handling large data streams.

This research has been supported by ERC Start-
ing Grant 240186 MiGraNT: Mining Graphs and Net-
works: a Theory-based approach.
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User generated content in online social networking
sites provides a potentially rich source of informa-
tion for applications that rely on personalisation, such
as on-line marketing. In this study we contribute to
this effort by exploring the use of machine learning
(ML) techniques to automatically infer users’ person-
ality traits based on their Facebook status updates
(i.e., text messages to communicate with friends).

Personality traits are commonly described using five
dimensions (known as the Big Five), i.e., extraver-
sion (EXT), agreeableness (AGR), conscientious-
ness (CON), neuroticism (NEU), and openness (OPN).
More than one trait can be present for the same user.
We train a binary classifier for each trait that sepa-
rates the users displaying the trait from those who do
not. Formally, given a set of statuses of each user,
represented as a feature vector x € RP, the task is
to obtain the set F {(z1,91), -, (21, 1)}, where
y; C C ={C4,...,Cs} corresponding to the five traits.
We use a variety of features as input for the classifiers:
(1) features related to the text of statuses (e.g., vocab-
ulary and writing style), (2) features about the user’s
social network (e.g., network size and density) and (3)
temporal factors (e.g., frequency of updating status).

Our initial results, based on 250 users and 9917 status
updates, show that even with a small set of training
examples we can outperform the majority baseline for
each trait, with SVM with a linear kernel leading over
kNN with k=1 and Naive Bayes. Table 1 presents the
results obtained based on accuracy.

EXT | NEU | AGR | CON | OPN
Majority baseline 0.62 | 0.55 | 0.54 | 0.52 | 0.70
Classification results | 0.68 | 0.66 | 0.57 | 0.55 | 0.71

Table 1. Classification results based on accuracy

(Golbeck et al., 2011) have recently done a similar
study on personality prediction based on all pub-
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licly available information in a user’s Facebook pro-
file. They obtain promising results on a dataset of 167
users, which is richer than ours in the sense that they
have crawled many more profile features (e.g., gender,
religion, list of favorite things,...) which were not avail-
able to us. Our experiments were carried out on a 250
user sample of a Facebook dataset from the myPerson-
ality project that was released on Feb 1, 2013 (Celli
et al., 2013). More efforts on predicting personality
traits using the myPersonality project data are un-
doubtedly underway, but no work has been published
yet based exclusively on Facebook status updates, net-
work properties and time factors, like our work.

We also trained the classifiers on a corpus of 2468 es-
says labeled with personality traits (Mairesse et al.,
2007). These essays are on average much longer than
the status updates, and the context is different. Still,
our results show that models trained on the essay
dataset perform well on the Facebook data, and vice
versa. This provides evidence that ML based models
for personality trait recognition generalise across dif-
ferent domains. Advantages of this are that training
examples from different social media platforms can be
used in combination to train more accurate models and
that such models are also applicable on social network
sites for which no training data is available.
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Because of the curse of dimensionality (Bellman, 1961))n conclusion, this presentation provides both theoretical
it is often necessary to reduce the dimensionality of datand empirical evidences that Ml is not a perfect feature se-
before learning. For example, micro-array datasets conlection criterion in all situations, but is still a valuable cri-
tain only a few tens of instances with thousands of featuregerion for feature selection, which is supported by the large
Such preprocessing can be achieved by feature selection.number of successful applications in the literature.

In the field of machine learning, mutual information (Ml)

has been widely used as a multivariate criterion of nonAcknowledgments
linear feature relevance (Kojadinovic, 2005; Rossi et al.
2006; Doquire & Verleysen, 2011). Indeed, it is well-
known in information theory thdt(X;Y) measures the re-
duction of uncertainty about a targétwhen a set of fea- References

turesX are observed_.. However, other c_riteria are COM-goman R. E. (1961). Adaptive control processes - a
monly used for classification and regression to assess the
quality of models, like e.g. accuracy or mean square error
(MSE). This presentation reviews several worksé(fay ~ Doquire, G., Fenay, B., & Verleysen, M. (2013). Risk
et al., 2012b; Fenay et al., 2013; Enay et al., 2012a; Do- estimation and feature selectidpr.oc. ESANN.
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and these criteria in a feature selection context. with mutual information for uncertain data. [Rata

Bounds exist for classification between M| and the proba- warehousing and knowledge discovery, vol. 6862 oflec-
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We propose feature selection algorithm based on online
co-regularization approach. We demonstrate that by
sequentially co-regularizing prediction functions con-
structed for each view we are able to efficiciently iden-
tify landmark features important for the learning pro-
cess. Furthermore, we evaluate the efficiency and
performance of the proposed algorithm on the Hu-
man Microbiome Project dataset (Human Microbiome
Project 16S rRNA 454 Clinical Production Phase I).
In particular we address the task of finding landmark
(biomarker) species that are highly predictive of the
abundance of Porphyromonas in the oral cavity. In
our empirical evaluation the proposed method notably
outperforms several feature selection techniques as well
as leads to significant computational benefits when
training the model.
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KL-control problems are a certain class of non-linear
stochastic optimal control problems for which the op-
timal control cost C is a Kullback-Leibler divergence
between the optimal control law p and the uncontrolled
process ¢ plus a state dependent expected cost of fu-
ture states (R), (Kappen et al., 2012; Todorov, 2007).

C = KL(pllg) + (R)y-
In this work, we show that this class of problems corre- Figure 1. Factor graph representation for the KL-stag-hunt
sponds to a probabilistic inference problem defined on problem. Approximate optimal control can be obtained
a factor graph, where variable nodes denote the states through the BP factor beliefs between two time slices.
of the system at different times and factor nodes en-

code either the uncontrolled process or the state costs. Computing them exactly is intractable, since the state
The optimal control is given by a marginal distribution space scales as NM. BP is an alternative approximate
that can be computed using standard methods such as algorithm with polynomial complexity.

the junction tree or belief propagation (BP). A=10 A=0.1
We consider the following game defined on a grid where 20[3 6:1—_ 20 F—

M agents (hunters) can move to adjacent locations for ,
T time steps. The grid also contains hares and stags 15 15
at fixed locations. Each hunter can choose between P
hunting a hare on his own, resulting in a small reward 10 @ @ T 10[8
Ry, or hunting a stag, resulting in a larger reward Q O

Rs > Ry, but requiring cooperation of two hunters. 5

o TLQ 5 O
To define the factor graph associated to this problem, 1Y ke 1
1 5 10 15

let x! (variables) denote the position of hunter i at 20 s
time ¢ on the grid. Also, let s; and hj denote the Figure 2. Examples of solutions using BP for 10 agents for
positions of the jth stag and the kth hare respectively. different values of A. (Left) Risk dominant optimal con-
The state dependent reward factor can be written as: trol: all hunters go for a hare. (Right) Payoff dominant
Yr(z') = exp(—1/AR(z")), optimal control: hunters cooperate to capture the stags.
M s o Small and big diamonds denote hares and stags respec-
R(:Ct) — Ry Z Z Sut n, + Rs I{(Z o = s;) > 1}. tively. Circles denote initial positions.
=ti=1 j=1 =1 References
The wuncontrolled dynamics factorizes among the Kappen, H. J., Gémez, V., & Opper, M. (2012). Optimal

] t—1\ t).t—1 .
agents d)‘l(x j277) = Hz Yq (xz|xz ) and is defined as control as a graphical model inference problem. Machine
a random walk, allowing an agent to stay or to move Learning, 87, 159-182.

t dj t iti ith 1 bability.
V(‘)]ariai Jacin (E) OtSI on .Wl .e qltla lpro ; H i, d Todorov, E. (2007). Linearly-solvable Markov decision
¢ “clamp- z; 1o a given mitial configuration amn problems. In NIPS 19, 1369-1376. MIT Press.

estimate the marginals (optimal controls) p(x!7T|x0).
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Health care spending is a heavy financial burden that
many nations have to face. Rising health care costs are
not only caused by aging populations and new medical
technologies, but also by unnecessary services, inflated
prices, or even fraud. In our research we are interested
in finding patterns that correspond to the latter three
causes.

When a patient visits a medical practitioner (a dentist,
pharmacy, GP, hospital etc.), the practitioner charges
an amount of money corresponding to the treatment
the patient received. Because the patient generally
does not know exactly what service is charged, there is
a risk of erroneous claim behavior or even fraud, since
the practitioner is the only one who knows the treat-
ment actually performed and charged. Our data, made
available by Achmea (the largest Dutch health insur-
ance company ), describes claims resulting from treat-
ments provided by several classes of medical practi-
tioners, including dentists, general practitioners (GPs)
and pharmacies.

1. Subgroup Discovery

The problem of identifying interesting patterns in
claim behavior is essentially an unsupervised learning
problem. We have no claims that are labeled as fraud-
ulent beforehand. The data we consider describes pa-
tients. A single record summarizes the care a patient
received during a certain period (usually one year).
The approach we take, is to single out a practitioner
and compare its claim behavior against all other prac-
titioners. We assume there is a single practitioner un-
der investigation (the target practitioner). There will
be a single target column ¢ with domain {0,1} (or
{true, false}), which identifies whether or not each
patient visited this practitioner over a given period of
time. Describing differences between target and non-
target examples is called Subgroup Discovery (SD).

In (Konijn et al., 2013a) we describe how local sub-
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groups of patients can be found. For a local subgroup,
patients in the subgroup are much more present at
the target practitioner (the target is true more often),
while ‘similar’ patients outside the subgroup are much
less frequently present. An example result is found
in the case of dentistry, where the subgroup { Consult,
X-Ray picture} is much more frequently true than the
(roughly similar) subgroup {Consult}, meaning that
the dentist under investigation charges an X-Ray pic-
ture next to a consult more often than other dentists.

Additional to counts of patients, also the costs spent
on the (treatments of) patients are important. Sub-
groups with more money involved, are more inter-
esting. We can view the data as having two target
columns: one binary target and one continuous target
describing costs. In (Konijn et al., 2013b) we investi-
gate possible quality measures that take into account
both the binary target as well as the costs-target. We
ailm to produce interpretable valuation of subgroups,
such that data analysts can directly value the findings,
and relate these to monetary gains or losses.

Current research is about including prior knowledge in
the SD process. In our application, practitioners that
mainly treat old patients will have a different claim dis-
tribution than practitioners that mainly treat young
patients. To still be able to compare practitioners, we
will incorporate this knowledge in the SD process.
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Given the large amount of classication algorithms
available, choosing an algorithm for a given dataset is
a non-trivial problem. In practice, a cross-validation
procedure is often employed to estimate the true er-
rors of a set of classifiers and the classifier with the
lowest error estimate is used. However, for small sam-
ple sizes, cross-validation error estimates have been
shown to become unreliable (Braga-Neto & Dougherty,
2004). Krijthe et. al. (2012) explore whether one can
improve classifier selection using techniques from the
field of meta-learning. This contribution recapitulates
the main finding.

Meta-learning assumes a collection of datasets is given.
Selecting a classifier can then be seen as a classification
problem on a meta level where datasets are the meta-
objects and the meta-features can be any measure de-
rived from a dataset. The meta-classes are the classi-
fiers that have the lowest true error on each dataset.
One could consider as a special case of meta-features
the cross-validation errors of all classifiers under con-
sideration.

As an illustration, the figure shows the meta-problem
of a simulated collection of datasets consisting of two
base problems. The goal is to choose which of two clas-
sifiers would give a lower generalization error. Regular
cross-validation selection corresponds to the diagonal
boundary in this space. It is clear that the decision
boundary of a trained meta-classifier, the dotted line,
is markedly different. In fact, when using this meta-
classifier the error in selecting the best classifier drops
from 0.16 to 0.06. Additionally, adding other meta-
features, such as the variance of the cross-validation
errors, further improves the classifier selection.
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These results corroborate the interesting observa-
tion that classifier selection by meta-learning tech-
niques can outperform the de facto standard: cross-
validation. Experiments on quasi-real world data sug-
gests these effect may be present in non-simulated data
as well. Secondly, the usefulness of adding additional
meta-features indicates that not all information rele-
vant in classifier selection may be present in the cross-
validation estimates, suggesting improved classifier se-
lection techniques may be possible.
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Sledgehammer (Paulson & Blanchette, 2010) is a subsys- ~ Acknowledgments
tem of the proof assistant Isabelle/HOL (Nipkow et al.,
2002) that discharges interactive goals by harnessing ex-
ternal automatic theorem provers (ATPs). It heuristically
selects a number of relevant facts (axioms, definitions, or
lemmas) from the thousands available in background li-
braries and the user’s formalization, translates the prob-
lem to the external provers’ logics, and reconstructs any
machine-found proof in Isabelle. The tool is popular with References
both novices and experts.
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MaSh is a learning-based alternative to MePo. It
learns from successful proofs, whether human-written or
machine-generated. MaSh’s heart is a Python program that
implements a custom version of a weighted sparse naive

Bayes algorithm that is faster than the algorithms used in Paulson, L. C., & Blanchette, J. C. (2010). Three years of
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Overfitting is a key problem in machine learning. It is
generally combatted using reqularization or Bayesian
techniques that employ priors favoring “simple” mod-
els over “complex” models. We propose a new ap-
proach to counter overfitting, called marginalized cor-
rupted features (van der Maaten et al., 2013, MCF).
Instead of perturbing models, which can be counter-
intuitive, MCF regularizes by perturbing the data. We
may know that certain corruptions of data instances
do not affect their label. For example, deleting a few
words in a document rarely changes its topic. MCF
uses this knowledge to generate additional data that
looks like real data: it corrupts the finite training set
with a corrupting distribution to construct an infinite
corrupted training set on which the model is trained.

The corrupting distribution, which specifies how train-
ing observations x are transformed into corrupted ver-
sions X, is assumed to factorize over dimensions d:

D
p(x[x) = [ [ Pe(&alza; na)-
d=1

Herein, 74 represents hyperparameters of the corrupt-
ing distribution. Corrupting distributions of interest,
Pg, include: (1) “blankout” noise in which features
are randomly set to zero, (2) Gaussian noise, and (3)
Poisson noise in which features are used as rates.

Assume we have a training set D = {(xpn,yn)}2_;
and a loss function L(x,y; ©), with model parameters
©. A simple approach to use the corrupting distri-
bution is by corrupting each training sample M times,
and training on the resulting N M corrupted instances.
Such an approach is effective (Vincent et al., 2008),
but it lacks elegance and is computationally expen-
sive. MCF addresses these issues by considering the
limiting case M — oo, in which we obtain the expected
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loss under the corrupting distribution:

N
L(D;0) = E[L(Xn, Yn; O)lp(x, x)-
n=1

For linear models, this expectation can be computed
analytically for many loss functions and corrupting dis-
tributions. For a linear model with weights w, the ex-
pected value of the quadratic loss under the corrupting
distribution p(X|x) is (Chen et al., 2012):

L(D;w) = nﬁ:lﬂa KwTin — yn>2]

P(Xn|xn)

N T
> YR [xn]> w+ N,

n=1

where the hat matrix H = YN | E[%,|E[%,]T+ V%],
and V[x] is the variance of . Hence, to minimize the
expected quadratic loss, we only need to compute the
mean and variance of the corrupting distribution. This
is efficient for a wide range of corruption models.

WTHW2(

For logistic loss, we derive a closed-form upper bound:

L(D;w) = XN: E [10g (1 +exp (—ynw'%y) )}

n=1

N D
< 3 tog (1 TTE i (vt )
n=1 d=1

Herein, we recognize a product of moment-generating
functions that can be computed efficiently for corrupt-
ing distributions in the natural exponential family.

D(Xn|Xn)

We show the merits of learning with MCF for vari-
ous models and corrupting distributions. In particular,
MCF achieves substantial performance improvements
in document classification and domain adaptation.
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In the field of Intelligent Transportation Systems
(ITS), different equipment is employed to collect data,
including video cameras, sensors, loop-detectors, mo-
bile devices and GPS-enabled vehicles. A number
of methods are developed to extract traffic events
from the collected data, such as vision-based meth-
ods (Yoneyama et al., 2004) and time series models
(Vespier et al., 2011). Due to environmental factors,
such as shadow, lighting, the vision-based methods
face the challenge of maintaining detection accuracy
(Yoneyama et al., 2004). The time series models can
also be problematic on certain types of time series
(Vespier et al., 2011).

In this work, we present a supervised method to ex-
tract traffic events from the datasets collected with
a sensor network installed on a highway bridge. Part
of the work was recently published in the international
TABSE conference (Miao et al., 2013). The sensor net-
work is is composed of 145 sensors, installed on three
cross-sections of one bridge span. We choose one strain
sensor on each side to catch traffic events on the bridge.

Traffic events are represented as peaks in the strain
signal. In practice, we cannot simply extract these
peaks from raw strain signals, because the strain sen-
sors are sensitive to environmental factors. We remove
baseline drifts, caused by temperature or traffic jams,
with the improved first derivative method (Wolfgang
et al., 1991), and extract a number of peaks from the
preprocessed strain signals. Each peak can be featured
as amplitude, duration, area and label. The label in-
dicates the peak type, which is obtained by referring
to video streams collected with a camera. According
to video streams, the peaks are divided into 5 groups:
noise, big vehicle ( of two directions), small vehicle (of
two directions).
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We choose a dataset with a length of 1 hour at night
as training dataset. Based the extracted peak features
from the training dataset, we create a decision tree
using the C4.5 algorithm in Weka (Hall et al., 2009).
We test the obtained model on a testing dataset, which
is also collected at night. We succeed in classifying
99.55% of the peaks in the testing dataset. At night,
the traffic is not heavy and there are less overlap peaks
in the collected signals. In the future, we will work on
traffic event identification methods for signals collected
during the rush hour.
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In supervised learning applications, AIC and many
other popular model selection methods are biased be-
cause they implicitly assume that the inputs (covari-
ates) X in the training set take the same values as the
inputs X’ in the test set. Based on a novel, unbiased
expression for KL divergence, we propose FAIC, a fo-
cused version of AIC that takes the value of X’ on the
test set into account. Our experiments suggest that
if X’ substantially differs from X, then FAIC predic-
tively outperforms AIC, BIC and several other meth-
ods including Bayesian model averaging.

We introduce FAIC as an adaptation of AIC to su-
pervised learning problems. The aim of AIC (Akaike,
1973) and many other model selection methods is to
use the data to find the model g which minimizes

~2Bu Ev logg(V | 0(U)), (1)
where 0 represents the maximum likelihood estimator
in that model, and both random variables are inde-
pendent samples of n data points each, both following
the true distribution of the data. This quantity can be
seen as representing that we first estimate the model’s
parameters using a random sample U, then judge the
quality of this estimate by looking at its performance
on an independent, identically distributed sample V.

In supervised learning problems such as regression and
classification, the data points consist of two parts u;
(z4,yi), and the models are sets of distributions on the
output variable y conditional on the input variable x
(which may or may not be random). We call these
conditional models. Then (1) can be adapted in two
ways: as the extra-sample error

—2Evy|x Ey/xlogg(Y' | X',0(X,Y)), (2)

and, replacing both X and X’ by a single variable X,
as the in-sample error

—2Evy|x Ev/x log g(Y' | X,0(X,Y)). (3)

The standard expression behind AIC (1) makes no ref-
erence to X or X', so that all known versions of AIC
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end up estimating the in-sample error. However, the
extra-sample error (2) is more appropriate as a mea-
sure of the expected performance on new data.

To get an estimator for (2), we do not make any as-
sumptions about the processes generating X and X'
(so we can deal with covariate shift and with nonran-
dom inputs) but treat these values as given. A deriva-
tion similar to AIC’s leads to a penalty term of k+rxx-
in place of AIC’s 2k; in the case of linear regression,

Kyt = %tr [X’TX’(XTX)_l ,

where X, X' represent design matrices and n,n’ their
respective numbers of data points. Similarly, a small
sample corrected version analogous to AIC¢ (Hurvich
& Tsai, 1989) can be derived and has penalty

(k+HX/)(k+1)
n—k—-1

k+rkx +

If our goal is prediction, then X corresponds to the
training data, and X’ may be replaced by a single point
x for which we need to predict the corresponding y.
We name this method Focused AIC. Note that FAIC
may select different models for different values of .
Alternatively, X’ may be chosen using (an estimate
of) all test inputs if a single choice of model is desired.
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Many machine learning studies have been conducted
over the past few decades from which much knowledge
has been obtained. However, due to space restrictions
imposed on publications, these are only published in a
highly summarized form (Vanschoren et al., 2012). It is
scientifically important that the details of experiments
are freely available to anyone for verifiability, repro-
ducibility and generalizability. Therefore, we introduce
a novel open science platform for machine learning re-
search, called OpenML!. OpenML is a website where
researchers can share all their datasets, algorithms and
experiments, search for the results of others, and com-
pare directly with the state of the art through con-
trolled experimentation. Beyond the descriptions of
algorithms in papers, OpenML allows researchers to
share detailed experiments that are comparable with
the results of other algorithms. Moreover, OpenML
links all experimental results, and all meta-data of al-
gorithms and datasets, for easy future analysis.

Users can define tasks which are well-described prob-
lems to be solved by a machine learning algorithm or
workflow. A typical task would be: Predict (target) at-
tribute X of dataset Y with mazimized predictive ac-
curacy. Other users are challenged to build algorithms
that solve these tasks. The creation of tasks happens
on the fly. Whenever a user is searching for tasks on
which his algorithm can be run, the system automat-
ically returns all tasks that are potentially of interest
to the user. There exists excellent tools that facilitate
controlled algorithm evaluation, such as MLComp?
and Kaggle®. OpenML differs from these on key as-
pects: It is intended for sharing experiments and com-
paring research results, all information requisite for re-
producing the experiments is openly available and the
results are stored in a public, queriable database.

An attempt to solve a task is called a run. The server

"Mttp://www.openml.org/, beta version
Zhttp://www.mlcomp.org/
Shttp://www.kaggle.com/
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provides the input data and stores the output data for
every algorithm. The algorithm is executed on the PC
of the user. For some tasks, e.g., predictive tasks, it
offers more structured input and output. For instance,
a supervised classification task provides the folds with
which a classifier can be trained and expects predic-
tions for all input instances. The server evaluates the
predictions and stores the scores for evaluation met-
rics. Also more general tasks can be defined, e.g., pa-
rameter optimization, feature selection and clustering.

We have developed a web API, which facilitates find-
ing and downloading tasks and datasets and uploading
implementations and results. This API will be inte-
grated in various machine learning tools, like Weka,
R, RapidMiner and KNIME. Given a task, the tools
can automatically download all associated input data.
Once executed, the result can be uploaded with just
one click. For example, in the case of supervised clas-
sification tasks, the input consists of a dataset and the
folds, and the result is a file containing the predictions.

For each algorithm in the database, an overview page
will be generated containing data about all tasks on
which this algorithm was run. This provides informa-
tion about the performance of the algorithm over a po-
tentially wide range of datasets, with various parame-
ter settings. For each dataset a similar overview page is
created, containing a ranking of algorithms that were
run on tasks with the dataset as input.
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More and more text documents are available digitally
and a need exists to categorize them. Manual indexing
is laborious and requires experts, thus there is poten-
tial for (semi-)automatic classification of these docu-
ments using a controlled vocabulary of concepts. We
compare two methods which train classifiers for these
concepts. The first method, called JEX, is based the
vector space model and was developed by the Euro-
pean Commissions Joint Research Centre (Pouliquen
et al., 2003; Steinberger et al., 2012). The second ap-
proach, described in this paper, is based on parsimo-
nious language models (PLMs) (Hiemstra et al., 2004)
and uses no language-dependent resources. Its param-
eters are easier to optimize and it outperforms the first
approach.

JEX’ method is empirically constructed using more
than 1500 experiments in which different combinations
of formulas and parameters were evaluated. The result
is a combination of log-likelihood, which is used to find
relevant terms, and a variation of inverse document
frequency to calculate the term-weights. Significant
improvements are obtained when large (multi-word)
stop lists are used and its 9 parameters are fine-tuned.

The PLM method estimates a concept classifier by
comparing the language used in documents labeled
with that concept to the language used in the whole
corpus. Terms which are well enough ezplained in the
whole corpus are given a probability of zero, thereby
reducing the size of the model and acting as an auto-
matic stop list.

Both methods were trained and compared on two po-
litical datasets, Acquis and Dutch parliamentary ques-
tions (PQ). We used 19 languages from the Acquis
dataset with each between 20.000-42.000 European
legislation documents labeled with concepts from the
EuroVoc taxonomy, which consist of 6797 hierarchi-
cally structured concepts. The PQ dataset contains
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nearly 40.000 documents labeled with a smaller tax-
onomy of 111 concepts. The first chronological 90% of
the data is used as train set, the final 10% as test set.

Versions of the PLM system based on unigrams and
bigrams where found to perform well, as shown in Ta-
ble 1. The multi-label classifiers yield a ranked list of
concepts for each document and are evaluated using R-
precision (Rprec) and mean average precision (MAP).
The unigram PLM system significantly outperformed
JEX in 11/19 languages on the Acquis dataset (and
performed similar in 3 other languages), while the bi-
gram version does this for all 19 languages. Both un-
igram and bigram systems reach significantly higher
scores on the PQ dataset. The PLM system uses only 3
parameters though the results across different datasets
and languages were obtained using parameters opti-
mized on a single language.

Table 1. Scores for the Dutch Acquis and PQ datasets. Sig-
nificance tested with two-tailed paired t-tests * = p < 0.01.

JEX (baseline)  unigram PLM bigram PLM
dataset Rprec MAP Rprec MAP Rprec MAP
Acquis (NL) 0.5527  0.5770 0.5576 0.5762 0.56734  0.59064
PQ 0.4120  0.5491 0.4807* 0.6197% 0.5175%  0.6436*
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Modeling the interactions between different types of
agents is of importance in many domains. Social net-
work sites are interested to predict whether two people
know each other and e-commerce websites spend huge
budgets to be able to recommend the right items to
visitors. Also, in biology predicting interactions be-
tween different biomolecules is one of most basic steps
in a systems biology approach. At a more abstract
level, these different settings are identical. There are
two sets of complex objects, with some kind of fea-
ture description. In addition, a relation matrix with
at least some observed elements is available, denoting
the interaction or relation between these objects. The
problem boils down to constructing a model that is
able to fill the missing values of this relation matrix.

Our methods consist of a general framework for solving
these types of problems based on a joint feature repre-
sentation of pairs of objects by means of the Kronecker
product pairwise kernel (KPPK). In this most general
case the Kronecker is taken between the two object
kernels. As such a pairwise kernel matrix is obtained
which encodes the covariance between two pairs of ob-
jects. This pairwise kernel matrix can subsequently
be used in any kernel-based learning algorithm, such
as support vector machines or kernel ridge regression.
By using kernels it is possible to work with complex
structured objects, such as sequences, graphs or trees.
Furthermore was shown that the KPPK can be used
to model arbitrary relations and can be modified for
specifically learning symmetric or reciprocal relations
(Waegeman et al., 2012).

Despite the strong theoretical foundations of relational
learning, many open questions still remain. Currently,
we are interested how to perform testing and cross val-
idation in such settings. For example, one expects the
model to make more accurate predictions for new com-
binations of objects that were included in the training
set than for a pair of previously unseen objects. Re-
cently in Nature, this effect was observed in a large-
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scale experiment (Park & Marcotte, 2012). How mod-
els for these different cases should be trained and how
their performance is affected is still unclear. Further-
more we are also interested to which degree our models
directly use the features of the objects, rather than in-
directly exploiting the structure of the relation matrix.

A strong foundation of our framework would allow us
to draw links to many other machine learning settings.
Per definition, our framework can be used for general
collaborative filtering problems, such as information
retrieval and recommender systems. For this we have
used a KPPK in an efficient ranking setting (Pahikkala
et al., 2012). It is also possible to view at our models
as multivariate regression or structured output predic-
tion. If one of the types of objects could represent a
certain task, our framework could be used for multi-
task learning. If the relation matrix is subjected to
certain restrictions, it could be used for graph match-
ing. Trying to find a generalized foundation between
these different settings is an exciting part of our study.
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We propose semi-supervised multi-view Gaussian pro-
cess (GP) model for microbial growth prediction. Our
semi-supervised GP model is formulated using co-
regularization approach, namely we construct GPs for
different views, such that the training error of each
hypothesis on the labeled data is small and, at the
same time, the hypotheses give similar predictions for
the unlabeled data Our model is naturally suitable for
taking into account multiple data representations and
learning complex non-linear interactions. We apply
proposed model for describing and predicting growth,
succession, and proliferation of microbial species in
the spoilage process. In our empirical evaluation on
the recently collected biological dataset the proposed
approach notably outperforms several regression tech-
niques and leads to better understanding of the role of
various bacterial species and their in uence on spoilage
process.
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It is challenging to construct a mathematical model
describing the properties of a system, especially when
the structure of the system cannot be fully determined
from the hypotheses at hand. In such cases, machine
learning techniques can be used to replace (parts of)
a mathematical decision model. However, the models
produced by machine learning have so far only been
used in a black-box fashion, e.g. as fitness functions or
parameters. We propose a white-boz optimization by
mapping a learned regression tree model to a mixed in-
teger linear program that can be used for optimization.
Consequently, the learned model’s properties are vis-
ible as constraints to a mathematical problem solver,
that can then use sophisticated branching and cutting
techniques on these constraints when finding solutions,
which are impossible in black-box optimization.

We illustrate our approach using a sequential auc-
tion design problem. The objective is to maximize
the expected revenued of the auctioneer with multiple
bidders (agents) who have complementary preferences
over items. We try to find the optimal ordering of
items to maximize the expected revenue. This prob-
lem is proven to be NP-complete. We learn the overall
preferences of the group of bidders from historical data
by viewing the prediction of the revenue of an auction
as a regression problem. We split this problem into
the subproblems of predicting the revenue of the auc-
tioned items, and then sum these up to obtain the
overall objective function.

We use the following simple example to demonstrate
the use of our method. Two agents a; and as
partake in a sequential auction of items A and B.
Their valuations are given by vg, (4) = 1,v,,(B)
1,v4, {A, B}) = 10,v4,(A) = 5. Two past auctions
are known: A was sold first to ay and then B to a1
with a total revenue of 6, whereas in the second auc-
tion, B was sold first and then A, both to a; with a
total revenue of 10. We construct feature values from
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two auctions, as shown in the table. sold(.) repre-
sents how many items of type (.) have been sold prior
to the current item. For each of item types, we learn
a regression tree (see the figure).

type | value soldA soldB type | value soldA soldB
A 5 0 0 B 1 0 0
B 1 1 0 A 9 0 1

Suppose we are given the set of items {A, B, B} for
which we need to find an optimal ordering. We can
then use the learned trees to formulate the problem of
finding an optimal ordering for this set of items as an
integer linear program (ILP), which can then be solved
by one of many ILP-solvers:

max

Zlgigs 52i1,A +92i2,4 +12i1,B

subject to

Ti A+ % B 1 forall1<i<n
T1,A +@2,4 + 3,4
r1,B + T2, B+ T3 B

sold; g =0 solds,p = x1,B + Z2.B

s0ld —0.5
50,5705 foralll1 <i<n

1.0 + 100
1d —0.
soldy, 505 forall1<i<n
forall1<i<n

Yi,s01dB>0.5

Yi,s0ldB>0.5
Yi,soldB<0.5

100
1.0 - Yi,s01ldB>0.5
?i,AtY; s01dB<0.5

zi,a < SR forall1<i<mn
7i,A1Y;,801dB>0.5 )

Zi,2,A < % foralll1<i<n

zi1,B < é'jf forall1<i<n

Although optimizing the orderings in sequential auc-
tions is a well-known hard problem, our method ob-
tains very high revenues, significantly outperforming
the greedy and random methods proposed in the litera-
ture. Our constructions are general and can be applied
to any settings where regression trees can be learned
from data, and their feature values can be computed
as linear functions from solutions.
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In weather and climate prediction studies multi-model
ensemble mean predictions are often employed to im-
prove prediction skills (Tebaldi & Knutti, 2007). In the
standard multi-model ensemble approach, the models
are integrated in time independently and the predicted
states are combined a posteriori. Recently an approach
has been proposed in which the models exchange in-
formation during the simulation (van den Berge et al.,
2011). This approach is called the supermodeling ap-
proach (SUMO). It assumes M imperfect models la-
beled by p, each describing the dynamics of the model
state vector @, according to @}, = f.(®,), in which
i labels the vector components. The individual mod-
els p are combined into one supermodel by prescribing
nonnegative connections C}'W between the i-th compo-
nent of model y and model v,

&), = (@) + ) Ol (), — ).

(1)

The connections are to be optimized using data, for
instance by minimizing short term prediction error of
the connected ensemble mean on the training data. Its
potential has been demonstrated in the context of 3-D
chaotic dynamical systems. With optimized connec-
tions, the models synchronize on a common solution
that is closer to the true system than any of the indi-
vidual model solutions.

In (Wiegerinck et al., 2013a), we have shown that with
large connections, the SUMO follows approximately
the weighted averaged trajectory

i = "w.fi(x). (2)

where the weights {w/,} can be derived from eigen-
vectors of the connection matrices. Also, with (2),
we could understand local minimima in the connec-
tion space and results due to parameter perturbations
reported in (van den Berge et al., 2011).
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In (Wiegerinck et al., 2013b), we defined the su-
permodel directly according to (2), which we called
weighted SUMO (opposed to connected SUMO in (1)).
While connected SUMO needs nonlinear optimization,
weighted SUMO can be optimized using linear op-
timization methods, making the method scalable for
models of higher dimensions. We demonstrated the
method in the context of a two-level, hemispheric,
quasi-geostrophic spectral model on the sphere, trian-
gularly truncated at wave number five, with 30 degrees
of freedom (Houtekamer, 1991).
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Conditional Random Fields (CRFs) are undirected
graphical models which have been widely applied for
sequence labelling, e.g. part-of-speech tagging. Train-
ing CRFs (Lafferty et al., 2001) can be very expen-
sive for large-scale applications (Sutton & McCallum,
2009). The standard training (SD) of CRFs needs
to calculate the partition function Zq(X) which is a
global summation over the whole graph. Piecewise
training (PW) (Sutton & McCallum, 2009) speeds up
the training process by approximating the partition
function with an upper bound. But piecewise training
is still not scalable to the variable cardinality. Another
option for sequence labelling is directed models such
as Maximum Entropy Markov Models (MEMMs) (Mc-
Callum et al., 2000) which can be trained efficiently.
But they suffer from the label bias problem (Lafferty
et al., 2001) which may lead to low accuracy.

In this paper (Zhu et al., 2013), we present a practi-
cally scalable training method for CRFs called Empir-
ical Training (EP). We show that the standard train-
ing with unregularized log likelihood can have many
maximum likelihood estimations (MLEs). Empirical
training has a unique closed form MLE which can be
calculated from the empirical distribution very fast.
The MLE of the empirical training is also one MLE
of the standard training. So empirical training can be
competitive in precision to the standard training and
piecewise training. And also we show that empirical
training is unaffected by the label bias problem even it
is a local normalized model. Experiments on two real-
world NLP datasets also show that empirical training
reduces the training time from weeks to seconds, and
obtains competitive results to the standard and piece-
wise training on linear-chain CRFs, especially when
training data are insufficient.

Experiment 1. Brown Corpus is used for the Part-
of-Speech (POS) tagging experiment. The size of the
tag space is 252. There are 32,623 sentences are used
for training and 1,000 sentences are used for testing.
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Table 1: Part-of-Speech Tagging Accuracy

Metric EP SD PW PWPL
Accuracy | 95.6 95.4 82.9 82.4
Time (s) | 3.9 | 4,571,807 | 3,791,648 | 261,021

The method may also suffer from some potential draw-
backs. When using large feature vectors the empirical
probabilities may become sparse, generalisation from
the training data to the test data may be a problem.
Also in the experiment we did not try global features.
So there is no evidence to show this method works
well with global features. Nevertheless, this method
is very fast and could be very useful for practitioners
who apply CRFs to large scale data sets.
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