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KL-control problems are a certain class of non-linear
stochastic optimal control problems for which the op-
timal control cost C is a Kullback-Leibler divergence
between the optimal control law p and the uncontrolled
process q plus a state dependent expected cost of fu-
ture states 〈R〉p (Kappen et al., 2012; Todorov, 2007).

C = KL(p‖q) + 〈R〉p.
In this work, we show that this class of problems corre-
sponds to a probabilistic inference problem defined on
a factor graph, where variable nodes denote the states
of the system at different times and factor nodes en-
code either the uncontrolled process or the state costs.
The optimal control is given by a marginal distribution
that can be computed using standard methods such as
the junction tree or belief propagation (BP).
We consider the following game defined on a grid where
M agents (hunters) can move to adjacent locations for
T time steps. The grid also contains hares and stags
at fixed locations. Each hunter can choose between
hunting a hare on his own, resulting in a small reward
Rh, or hunting a stag, resulting in a larger reward
Rs � Rh, but requiring cooperation of two hunters.

To define the factor graph associated to this problem,
let xti (variables) denote the position of hunter i at
time t on the grid. Also, let sj and hk denote the
positions of the jth stag and the kth hare respectively.
The state dependent reward factor can be written as:
ψR(xt) = exp(−1/λR(xt)),

R(xt) = Rh
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The uncontrolled dynamics factorizes among the
agents ψq(xt|xt−1) =

∏
i ψq(xti|xt−1

i ) and is defined as
a random walk, allowing an agent to stay or to move
to an adjacent position with equal probability.
We “clamp” x0i to a given initial configuration and
estimate the marginals (optimal controls) p(x1:T |x0).
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Figure 1. Factor graph representation for the KL-stag-hunt
problem. Approximate optimal control can be obtained
through the BP factor beliefs between two time slices.

Computing them exactly is intractable, since the state
space scales as NM . BP is an alternative approximate
algorithm with polynomial complexity.
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Figure 2. Examples of solutions using BP for 10 agents for
different values of λ. (Left) Risk dominant optimal con-
trol: all hunters go for a hare. (Right) Payoff dominant
optimal control: hunters cooperate to capture the stags.
Small and big diamonds denote hares and stags respec-
tively. Circles denote initial positions.
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